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Natural Intelligence: the INNS Magazine 
Editorial Board 

In 2013 Drs. Robert Kozma, Francesco Carlo Morabito, and Harold Szu had joined to the Co-Editors of Natural 
Intelligence: the INNS Magazine. The first issue of the second volume is finally online on July 31st, 2013. We would like 
to have the second issue of the second volume in the late 2013. 

The INNS welcomes YOU who as many our members, by studying neural networks, strive to bridge the gap between 
natural and artificial intelligence… I welcome you to join the INNS to help us improve our collective understanding of 
the human brain/mind and create more powerful intelligent machines for addressing complex problems of the world. 

Danil Prokhorov, President of the International Neural Networks Society 
 
The International Neural Networks Society (INNS) is embarking on a new journey. Not satisfied with its own past 
successes, INNS is constantly looking for new ways to better itself.  The goal is for INNS to be the most prestigious 
professional organization in fields around neural networks and natural intelligence (broadly defined), as it has been for 
years. To keep up with the fast changing world of relevant science and technology, a new magazine that is designed to 
appeal to a broader readership ---the new INNS magazine entitled “Natural Intelligence”---thus is born.   

                        Ron Sun, Former President of the International Neural Networks Society 

The new INNS magazine aims at bridging different communities, spreading from neuroscientists to information 
engineers, and also from university students to world leading researchers. We define “Natural Intelligence” to include 
both “intelligence existing in nature” and “intelligence based on the state of things in nature”. Therefore, the new 
INNS magazine “Natural Intelligence” plans to cover (a) experiments, (b) computational models, and (c) applications of 
the intelligent functions in our brains. Also, there is an important need for well-written introductory papers targeting 
both young and established researchers from other academic backgrounds. The interdisciplinary nature of the many 
new emerging topics makes these introductory papers essential for research on Natural Intelligence. Therefore, the 
new INNS magazine will mainly publish (a) review papers, (b) white papers, and (c) tutorials. In addition, columns, 
news, and reports on the communities will also be included.     

Soo-Young Lee, Co-Editor, Natural Intelligence: the IN INNS Magazine 
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Bridge between Natural and Artificial Intelligence 

 
Danil Prokhorov 

The INNS President 
 

 
 

 

 

 

 
 

The INNS welcomes YOU who as many our members, by studying neural networks, strive to bridge 
the gap between natural and artificial intelligence. Among many INNS research areas are 
neuroscience, connectionism, cognitive science, brain-inspired computing, neuroinformatics, brain 
informatics, and all kinds of neural network applications. The INNS also welcomes those who study 
emerging research topics, for example, bio-inspired robotics, autonomous learning and mental 
development, etc. 

The diversity and inclusive spirit of the INNS are reflected in our resolve to develop and support 
special interest groups (SIG) and regional chapters, especially in developing regions of the world, and 
to foster collaborations with other professional societies. 

The INNS actively collaborates with several professional organizations, such as the European Neural Network Society 
(ENNS), the Japanese Neural Network Society (JNNS), the IEEE Computational Intelligence Society (CIS), and the Asia-
Pacific Neural Network Assembly (APNNA), to name a few. 

With IEEE-CIS, we take turns in leading the organization process of the International Joint Conference on Neural 
Networks (IJCNN), which is the premier venue for our members. 

With the ENNS and JNNS, we share our flagship journal, Neural Networks, which publishes top-quality results of studies 
in various areas of neural networks and natural intelligence.  We also publish this magazine, Natural Intelligence, under a 
skillful leadership of Soo-Young Lee and his team. 

Let me also use this opportunity to welcome new members of the INNS Executive Commitee, from this year, Kathy Kuehn 
– the INNS Managing Director, Ali Minai – VP for Conferences, Have Siegelmann – Secretary, as well as continuing 
members Irwin King – VP for Membership and Dave Casasent – Treasurer.   
I would like to welcome three new members of our Board of Governors, Prof. Juergen Schmidhuber, Prof. De-Shuang Huang 
and Prof. Danilo Mandic, as well as Ron Sun, Ali Minai and Irwin King who were elected too to continue their important 
service to the INNS. 

On behalf of the Board, I would also like to express deep appreciation to Prof. Ron Sun for his two years of excellent 
service as the INNS President.  I would also like to thank Bruce Wheeler, our past managing director, for his many years of 
dedication to our society! 

Last but not least, let me also thank the outgoing members of the Board, Profs. Stefan Schaal, Robert Kozma, Derong Liu, 
Carlo Morabito and Klaus Obermayer for their valuable service to the society!    

The INNS presents its highest honors to outstanding researchers who made significant, ground-breaking contributions to 
the science and technology in our fields, including the Hebb Award, the Helmholtz Award, and the Gabor Award.  For this 
year the awards will be presented at the IJCNN 2013 in Dallas, to these outstanding scientists: Robert Hecht-Nielsen for the 
Gabor Award, David Willshaw for the Hebb Award, and Juergen Schmidhuber for the Helmholtz Award.  And one more 
award called INNS Young Investigator Award is to be presented to Jan Peters.  Congratulations to all of INNS Awardees! 

I welcome you to join the INNS to help us improve our collective understanding of the human brain/mind and create more 
powerful intelligent machines for addressing complex problems of the world.                                     ■   

              
 

 
 
 
 

  

Message from the INNS President 
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The doctorate degree was historically introduced by von Humboldt at Berlin University in 1810. In 
the USA, the first student that received the Ph.D. was at Yale University in 1862.  

The university students that conclude the study program (typically in three years) are awarded the 
Doctor of Philosophy (Ph. D) degree. The doctorate has the main objective of forming researchers 
through training in relevant centres and under the supervision of an experienced, somehow 
recognized, supervisor. Recently, the possibility of having a pool of supervisors has emerged 
somewhere, in particular, in the USA. This is the purpose of my editorial writing. 

BACKGROUND: Recently, the European Universities Association (EUA) fixed the core 
competencies to be acquired at the 3rd cycle level through the Salzburg recommendations, in order to 

avoid reducing the standard of the Ph.D. and to refocus on the importance of research. At an European level, there was an 
impetus for increasing the Ph.D. education till thinking at a model of doctoral training incorporated as a third level course 
within the programs of many Universities. 

Among the relevant points to be achieved, there was the indication of some principles of innovative doctoral training. A 
significant emphasis was given to interdisciplinary for reaching research excellence. The Ph.D. students should follow an 
articulate path that includes opportunities to work in industry during the training as well as to develop generic, transferable 
skills. Ultimately, the training of doctorates should be finalized to improve the ability to cope with emerging economy’s 
requirements. To be competitive there is a need for international networking also with the aim of recognizing modern and 
varied perspectives of different countries. However, the network of excellence is mainly intended at a “regional” level (say, 
European, or US-based Universities). 

OPPORTUNITY: As more and more scientific, medical and engineering applications and innovative researches involve 
natural intelligence, and since our Society is “naturally” networked in the world (through INNS, ENNS, and JNNS), I 
think it is now the right time to think and, possibly, design an International Doctorate in Natural Intelligence. Of course, 
the programme should lead to transform excellent qualified students from all over the world in successful researchers. Thus, 
they should spend part of their training time involved in researches which are carried out in different laboratories in the world, 
with supervisors proposed and selected by, for example, our societies’ governors. 

MOU: An international Memorandum of Understanding (MOU) agreement should be signed among different involved 
parties in order to define a commonly accepted plan of lectures and research topics. The students should be involved in 
preparing and being first authors of internationally peer-reviewed papers within the Ph.D. course, under the directions of a 
pool of supervisors. 

SCOPE: Once assessed the involvement of different international research centres and guaranteed the mobility through the 
centres with mutual recognition of the training activities, with regards to the content of the course, a detailed study should 
define the core competencies to be acquired within the wide range of Natural Intelligence coverage. They should certainly 
include basic symbolic and computational intelligence (natural language processing, search, agents, knowledge based systems, 
social agents and signal processing); machine learning (neural networks, evolutionary computation, swarm intelligence, 
kernel machines, hybrid signal processing); software and hardware implementation of bio-(brain-)inspired circuits from 
design to realization (e.g., olfactory, vision, tactile-recognition systems); automation and robotics; neuromorphic engineering; 
but also some high-level topics of modern mathematics, statistics, physics, management/economic/financial matters, and 
perhaps psychology and certainly Brain-like computational tools. 

GOVERNESS: The applications and the research topics to be developed as individual assignments/projects should be 
proposed by the Steering Committee of the Ph.D. Course that would include outstanding scientists from our societies 
covering all the world by focusing on different aspects of the various economies/cultural models involved. The students will 
be encouraged to meet at the IJCNN conferences, each year, to discuss the advancement of their activities, to present written 

Editor’s Column 
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reports and to collectively analyse their achievements. INNS/ENNS/JNNS could grant a special awards to the best reports. 
This could help in growing a group of future leading researchers within our Societies that finally will guarantee the survival 
of our associations through the years to come. 

FINANCE: It would not be difficult to find the grants coverage for a limited number of excellent Ph.D. students within the 
research projects we individually carry out at our Universities. The clear advantage for our own organizations will be 
multiple recognitions at world level. Our NI Magazine could be a privileged publication site for the advancements of 
doctorates’ activity. 

ACTION: We shall continue the discussion to sketch a DALLAS MOU while enjoying a great IJCNN 2013, Dallas, TX, 
USA!                                                                                              ■ 
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Abstract 

The purpose of the tutorial is to offer an overview of the 
theoretical and empirical issues in artificial consciousness. 
Is it possible to devise, project and build a conscious 
machine? What are the theoretical challenges? What are the 
technical difficulties? What is the relation between 
cognition and consciousness? The most promising models 
will be sketched and contrasted: Global Work Space, 
Tononi’s information integration, Embodied Cognition, 
Externalist approaches, bio-inspired cognitive architectures. 
Questions to be discussed include: What advantage does 
consciousness provide? Is conscious experience the 
hallmark of a special style of information processing? 
Would conscious machines be able to outperform intelligent 
machines? 

1. Is consciousness Relevant for AI? 
Since 1949 – when Shannon and Weaver cast the 

foundation for the forthcoming information age (Shannon 
and Weaver 1949) – computer science, cognitive science, 
AI and engineering have aimed to replicate the cognitive 
and mental capabilities of biological beings. To this purpose, 
various strategies have been envisaged. By and large, we 
may distinguish various approaches: the symbolic and 
logical approach of classic AI (Haugeland 1985a; Russell 
and Norvig 2003), the sensori-motor approach (Pfeifer 
1999), neural-network oriented design (Sporns 2011), the 
bioinspired strategy (Pfeifer, Lungarella et al. 2007b), and 
the classic AI approach (Russell and Norvig 2003). All 
these approaches share something – they focus mostly on 
the intelligent behavior showed by agents. They try to 
replicate the capability to react to the environment stimuli 
and to choose the appropriate course of actions. However, 
something may be missing. According to Russel & Norvig 
(2003) one of the main goal of AI has been that of 
designing system that think … “machine with minds in the 
full and literal sense” (Haugeland 1985b). A full-fledged 
mind inevitably raises the issue of consciousness.  

If we take the human being as the target of our efforts, 
we are immediately struck by something that AI so far has 
not addressed properly, namely consciousness. 

Human beings not only act and behave. They are 
conscious of what they do and perceive. Somehow, human 
beings feel what happens to them, a condition usually 
defined as being conscious or as having consciousness. 

 
 
 
 
 
 
 
 
 
 
There is something that it like to be a certain human being 
(Nagel 1974). Furthermore, there seems to be some strong 
dependence between autonomy and consciousness.  
The problem of consciousness appears so difficult that it 
has been dubbed the hard problem (Chalmers 1996), to the 
extent that some scientists and philosophers have even 
argued that it may lie beyond our cognitive grasp (McGinn 
1989; Harnad 2003).  

For one, there is a crucial question of paramount 
importance in neuroscience and AI: does consciousness 
provide a better way to cope with the environment? Or, to 
put it differently, has consciousness any selective advantage? 

At this point and very broadly, there are two conflicting 
positions. On the one hand, there are authors that set aside 
consciousness as a philosophical issue of no concern for AI, 
Cognitive Science and Neuroscience. As Ronald Arkin put 
it, “Most roboticists are more than happy to leave these 
debates on consciousness to those with more philosophical 
leanings” (Arkin 1998). Either because consciousness has 
no practical consequences or because it is a false problem, 
these group of authors prefer to focus on more defined 
issues (vision, problem solving, knowledge representation, 
planning, learning, language processing). For them, either 
consciousness is a free bonus at the end of the AI lunch, or 
is nothing but a by-product of biological/computational 
processes.  

On the other hand, an increasing number of scientists are 
taking seriously into consideration the possibility that 
human beings’ consciousness is more than an 
epiphenomenal by-product. Consciousness may be the 
expression of some fundamental architectural principle 
exploited by our brain. If this insight were true, it would 
mean that, in order to replicate human level of intelligence, 
we ought to tackle with consciousness too. 

In support of pro-consciousness group, there is the fact 
that we have a first-person experience of being conscious, 
which is not deniable by any amount of theoretical 
reasoning. In other words, when I feel a pain in my arm, 
there is something more than the triggering of some 
appropriate behavioral response. If this feeling had no 
practical consequences, it would follow that consciousness 
is epiphenomenal – namely that it has no practical 
consequences whatsoever. More bluntly, it would follow 
that consciousness is a useless phenomenon. Such a 
conclusion would contradict the principle of natural 
selection – it does not seem likely. Furthermore, in the 
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animal kingdom, there seems to be a correlation between 
highly adaptable cognitive systems (such as human beings, 
primates, and mammals) and consciousness. Insects, worms, 
arthropods, and the like that are usually considered devoid 
of consciousness are much less adaptable (they are 
adaptable as a species but not very much as individuals).  

As a result, many scientists are now looking for 
something that explicitly addresses the issue of machine 
consciousness (Buttazzo 2001; Holland 2003; Holland 2004; 
Adami 2006; Chella and Manzotti 2007; Aleksander 2008; 
Aleksander, Awret et al. 2008a; Buttazzo 2008; Chrisley 
2008; Manzotti and Tagliasco 2008).  So far, there is no 
accepted consensus as to what consciousness may be. There 
are several and often conflicting hypotheses. According to 
some authors, consciousness is the result of a special kind 
of information process related with information integration 
(Tononi 2004b; Tononi 2008). According to another group 
depend on goal generation and development (Manzotti and 
Tagliasco 2005b), or embodiment (Holland 2004), or a 
certain kind of information processing akin to the global 
workspace (Shanahan 2005a; Shanahan 2010), or the 
replication of imagination and synthetic phenomenology 
(Aleksander, Awret et al. 2008b; Chrisley 2009b), or 
emotions (Ziemke 2008a), and so forth. 

Furthermore, consciousness is a not only a technical 
challenge but also a theoretical feat. In this paper, I would 
like to address two lines of enquiry. On the one hand, I 
would like to consider and to list a series of fundamental 
scientific problems that consciousness research cannot set 
aside. On the other hand, I would like to consider a series of 
approaches and I will briefly evaluate their pros and cons. 

Among the main scientific issues, I would list: 
− Cognitive unity 
− Intentionality 
− Representation 
− Freedom 
− Temporal integration 
− Feeling vs. functing 

These issues are paramount both because they are 
correlated with conscious experience and because they 
poses a formidable obstacle to our scientific understanding 
of the nature of consciousness.  

In short, the issue of consciousness is still controversial 
and full of obstacles. We do not yet know how to tackle 
with it nor how to measure our success. On this regard, 
Jaegwon Kim stated that (Kim 1998) 

we are not capable of designing, through theoretical 
reasoning, a wholly new kind of structure that we 
can predict will be conscious; I don’t think we even 
know how to begin; or indeed how to measure our 
success.  

Yet it may be a necessary step in devising and building a 
true autonomous and efficient intelligence machine – a 
machine with a mind. After all, the lack of a formal 
definition is not necessarily an obstacle that prevents any 
progress (Koch 2004): 

Historically, significant scientific progress has 
commonly been achieved in the absence of formal 
definitions. For instance, the phenomenological laws 
of electrical current flow were formulated by Ohm, 
Ampère, and Volta well before the discovery of the 
electron in 1892 by Thompson. For the time being, 
therefore, I adopt [a] working definition of 
consciousness and will see how far I can get with it.  

2. Strong and Weak Machine Consciousness 
The recent upsurge of interest and optimism as to the 

possibility of modeling and implementing conscious 
machines or conscious agents (Buttazzo 2001; Holland 
2003; Holland 2004; Adami 2006; Chella and Manzotti 
2007; Aleksander 2008; Aleksander, Awret et al. 2008a; 
Buttazzo 2008; Chrisley 2008; Manzotti and Tagliasco 
2008) should not lead anyone to underestimate the many 
critical issues lurking in the background.  

Machine consciousness is not simply a technological 
issue, but rather a field that poses old unanswered questions 
such as the relation between information and meaning, the 
nature of teleology, the unity of the self, the nature of 
phenomenal experience, and many others. Like psychology, 
it can be observed that machine consciousness has a long 
past and a very brief history (Ebbinghaus 1908). Although 
the term is fairly recent (first time Nemes 1962), the 
problem has been addressed since Leibniz’s mill. Machine 
consciousness offers the opportunity to deal with the hard 
problem of consciousness from a different perspective – a 
fact already clear 40 years ago when Hilary Putnam wrote 
that (Putnam 1964, p. 669) 

What I hope to persuade you is that the problem of 
the Minds of Machines will prove, at least for a 
while, to afford an exciting new way to approach 
quite traditional issues in the philosophy of mind. 
Whether, and under what conditions, a robot could 
be conscious is a question that cannot be discussed 
without at once impinging on the topics that have 
been treated under the headings Mind-Body Problem 
and Problem of Other Minds.  

Machine consciousness is a promising field of enquiry 
for at least two reasons. First, it assumes that consciousness 
is a real phenomenon affecting behavior (Jennings 2000; 
Koch 2004; Miller 2005; Seth, Dienes et al. 2008). 
Secondly, it suggests the possibility to reproduce, by means 
of machines, the most intimate aspect of our mind – namely 
conscious experience. Although many argued against the 
possibility of machine consciousness mostly because of a 
priori assumptions (“no machine will ever be like a man”), 
no one has conclusively argued against such a possibility so 
far. Biological chauvinism does not seem move from 
convincing arguments. 

Besides, any argument that seems to deny the possibility 
of machine consciousness is faulty insofar as the same 
argument would deny the very possibility of human 
consciousness. For instance, a naïve adversary of machine 
consciousness may argue that since CPUs and computer 
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memory do not seem to be the right kind of stuff to harbor 
phenomenal experience, a computer will never be conscious. 
And yet, borrowing Lycan’s words if such (Lycan 1981, p. 
37-38) 

pejorative intuition were sound, an exactly similar 
intuition would impugn brain matter in just the same 
way […]: ‘A neuron is just a simple little piece of 
insensate stuff that does nothing but let electrical 
current pass through it from one point in space to 
another; by merely stuffing an empty brainpan with 
neurons, you couldn’t produce qualia-immediate 
phenomenal feels!’ – But I could and would produce 
feels, if I knew how to string the neurons together in 
the right way; the intuition expressed here, despite 
its evoking a perfectly appropriate sense of the 
eeriness of the mental, is just wrong.  

Contrary to classic AI and functionalism, machine 
consciousness enthusiasts seem to consider that the classic 
functional view of the mind in terms of either functions or 
modules (a la Dennett, so to speak) is insufficient to grasp 
the full scope and capacity of a conscious agent. Therefore, 
the traditional arguments against strong AI – for instance, 
Searle’s Chinese Room or Block’s Chinese nation argument 
– loose some of their strength. A machine is not necessarily 
a Turing machine. In fact, although most available 
machines are instantiations of von Neumann’s blue print, 
other architectures are becoming available. There is no a 
priori reason why a machine has to be an instantiation of a 
Turing machine. Views – such as embodiment, situatedness, 
and externalism – challenge the classic AI disembodied 
view of a syntactical symbol-crunching machine (Chrisley 
1995; Hirose 2002; Shanahan 2005b; Pfeifer, Lungarella et 
al. 2007a). 

Roughly speaking, machines consciousness lies in the 
middle between biological chauvinism (only brains are 
conscious) and liberal functionalism (any functional 
systems behaviorally equivalent is conscious). Its 
proponents maintain that biological chauvinism could be 
too narrow and yet they concede that some kind of physical 
constraints is unavoidable (no multiple realizability). 

Recently, many authors emphasized the alleged 
behavioural role of consciousness (Baars 1988; Aleksander 
and Dunmall 2003; Sanz 2005; Shanahan 2005b) in an 
attempt to avoid the problem of phenomenal experience.  

Owen Holland suggested that it is possible to distinguish 
Weak Artificial Consciousness from Strong Artificial 
Consciousness (Holland 2003). The former approach deals 
with agents that behave as if they were conscious, at least in 
some respects. Such view does not need any commitment to 
the hard problem of consciousness. On the contrary, the 
latter approach deals with the possibility of designing and 
implementing agents capable of real conscious feelings.  

Although the distinction between weak and strong 
artificial consciousness sets a useful temporary working 
ground, it may suggest a misleading view. Setting aside the 
crucial feature of the human mind – namely phenomenal 
consciousness – may divert from the understanding of the 

cognitive structure of a conscious machine. Skipping the so-
called “hard problem” could not be a viable option in the 
business of making conscious machines. 

The distinction between weak and strong artificial 
consciousness is questionable since it is not matched by a 
mirror dichotomy between true conscious agents and “as if” 
conscious agents. Yet, human beings are conscious and 
there is evidence that most animals exhibiting behavioural 
signs of consciousness are phenomenally conscious. It is a 
fact that human beings have phenomenal consciousness. 
They have phenomenal experiences of pains, pleasures, 
colors, shapes, sounds, and many more other phenomena. 
They feel emotions, feelings of various sort, bodily and 
visceral sensations. Arguably, they also have phenomenal 
experiences of thoughts and of some cognitive processes. 
Finally, they experience being a self with a certain degree 
of unity. Human consciousness entails phenomenal 
consciousness at all levels.  

In sum, as mentioned above, it would be very bizarre 
whether natural selection had selected consciousness 
without any selective advantage. Thus, we cannot but 
wonder whether it could be possible to design a conscious 
machine without dealing squarely with the hard problem of 
phenomenal consciousness. If natural selection went for it, 
we strongly doubt that engineers could avoid doing the 
same. Hence it is possible that the dichotomy between 
phenomenal and access consciousness – and symmetrically 
the separation between weak and strong artificial 
consciousness – is eventually fictitious. 

While some authors adopted an open approach that does 
not rule out the possibility of actual phenomenal states in 
current or future artificial agents (Chella and Manzotti 2007; 
Aleksander, Awret et al. 2008a), other authors (Manzotti 
2007; Koch and Tononi 2008) maintained that a conscious 
machine is necessarily a phenomenally conscious machine. 
For them to be conscious is necessarily having phenomenal 
experiences or having P-consciousness (Block 1995). For 
instance, Giulio Tononi suggested that the kind of 
information integration necessary to exhibit a human level 
of cognitive autonomy is associated to the emergence of 
consciousness (Tononi 2004a). 

3. Scientific Issues 
This paragraph will sketch the scientific, theoretical and 

philosophical issues at the roots of machine consciousness 
(indeed often of consciousness itself). Too often 
researchers accept assumptions that are very far from being 
justified either empirically or theoretically. As a result, 
many years have been wasted in pursuing goals on the 
basis on unwarranted premises. 

For one, there is no reason why consciousness should be 
related to biology. So far, no one has ever been able to 
suggest any kind of necessary link between the carbon-
based molecules featured by living organisms and 
consciousness. For instance, at a meeting sponsored in 
2001 at the Cold Spring Harbour Laboratories addressing 
the question 'Could Machines Be Conscious?', the 
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participants agreed on the fact that there is no known law 
of nature that forbids the existence of subjective feelings in 
artifacts designed or evolved by humans. And yet machine 
consciousness poses many scientific issues that are worth 
of attention. I will briefly consider each of them. 

A. Embodiment 
A much heralded crucial aspect of agency has been 

embodied cognition (Varela, Thompson et al. 1991/1993; 
Clark 1997; Ziemke and Sharkey 2001; Pfeifer and 
Bongard 2006). It cannot be in any way underestimated the 
importance of the interface between an agent and its 
environment, as well as the importance of an efficient body, 
it is far from clear whether this aspect is intrinsically 
necessary to the occurrence of consciousness.  

Although we believe that a body is indeed a necessary 
condition, we wonder whether there had been any clear 
understanding of embodiment.  

Apart from intuitive cases, when is an agent truly 
embedded? In some sense, there is no such a thing as a not 
embodied agent, since even the classic AI algorithm has to 
be implemented as a physical set of instructions running 
inside a physical device. In some other sense, even a 
complex robot such as ASIMO is not embodied. It has a 
very centralized inner controller computing everything. 
There are many examples of biological agents that would 
apparently score very well as to embodiment and that do 
not seem good candidate for consciousness. Take insects, 
for instance. They show impressive morphological 
structure that allows them to perform outstandingly well 
without a very sophisticated cognitive capability.  

The notion of embodiment is probably a lot more 
complex than the simple idea of having a body and 
controlling actuators and sensors. It refers to the kind of 
development and causal processes engaged between an 
agent, its body, and its environment.  

B. Situatedness 
Besides having a body, a conscious agent could need also 

being part of a real environment. Yet this is controversial. 
For instance, many authors argued that consciousness could 
be a purely virtual inner world created inside a system that, 
to all respects, could avoid any true contact with a real 
world (Lehar 2003; Metzinger 2003; Grush 2004). They 
seem to advocate the possibility of a conscious brain in a 
vat. Yet we have no empirical evidence that an isolated 
brain would ever be conscious. There are no known real 
cases. To this extent, the possibility of a pure virtual 
phenomenal experience is bizarre, and this bizarreness dims 
its appeal considerably. 

If a consciousness requires embodiment and situatedness, 
a definition of situatedness would be necessary. 

Usually, alleged embodied robots such as Brook’s agents, 
Babybot, Passive walkers, and similar (Brooks, Breazeal et 
al. 1999; Collins, Wisse et al. 2001; Metta and Fitzpatrick 
2003; Paul, Valero-Cuevas et al. 2006) are regarded as 
examples of integration with the environment since they 
outsource part of their cognitive processes to smart 

morphological arrangements that allow greater efficiency or 
simpler control. Yet this could be a unwarranted premise. 

True situatedness may involve some kind of 
developmental integration with the environment such that 
the behavioral and teleological structure of the agent is the 
result of past interactions with the environment. A real 
integrated agent is an agent that changes in some non-trivial 
way (which has to be better understood) as a result of its 
tight coupling with the environment. The aforementioned 
artificial agents lack this kind of development: they remain 
more or less the same.  

Another fruitful approach is represented by those 
implementations that outsource part of the cognitive 
processes to the environment (Brooks 1991). For instance, 
the field of epigenetic robotics is strongly interested in 
designing robots capable of developing accordingly with 
the environment (Metta, Sandini et al. 1999; Zlatev 2001; 
Bongard, Zykov et al. 2006). 

C. Emotions and motivations 
It has been maintained that emotions are key to 

consciousness. For instance, Damasio suggested that there 
is a core consciousness supporting the higher forms of 
cognition (Damasio 1999). Although this is a fascinating 
hypothesis, it remains unclear how emotions should be 
implemented. Many roboticists draw inspiration from 
various emotional models (Manzotti 1998; Arkin 2003; 
Breazeal 2003; Fellous and Arbib 2003; Trappl, Petta et al. 
2003; Arbib and Fellous 2004; Minsky 2006; Ziemke 
2008b). However, in which case an architecture is really 
equipped with emotion? When are emotions more than 
labels on cognitive modules? 

Furthermore, it may be the case that emotions depends on 
consciousness. Another misleading approach has been that 
offered by the ubiquitous Kismet often described as a robot 
with emotions (Breazeal 2003). Kismet has nothing to do 
with emotions apart mimicking them in front of their users. 
The robot does not contain any convincing model of 
emotions but only an efficacious hard-wired set of 
behaviors for its captivating robotic human-like facial 
features. In Kismet case, it is not altogether wrong saying 
that emotions are in the eye of the human beholder.  

D. Unity and causal integration 
Consciousness seems to depend on the notion of unity. 

Yet what does it give unity to a collection of parts, being 
them events, parts, processes, computations, instructions? 
The ontological analysis has not gone very far (Simons 
1987; Merrick 2001) and neuroscience wonders at the 
mystery of neural integration (Revonsuo 1999; Hurley 
2003). Machine consciousness has to face the issue of unity. 
Would be enough to provide a robot with a series of 
capabilities for the emergence of a unified agent? Should 
we consider the necessity of a central locus of processing or 
the unity would stem out of further unexpected aspects? 
Classic theories of consciousness are often vague as to what 
gives unity to a scattered collection of processes. For 
instance, would the Pandemonium like community of 
software demons championed by Dennett (Dennett 1991) 

Natural Intelligence: the INNS Magazine                   10                             Volume 2, Issue 1, July 2013 



become a whole? Has software unity out of its 
programmer’s head? Would embodiment and situatedness 
be helpful? 

A novel approach to the problem of unity is the notion of 
integrated information introduced by Giulio Tononi 
(Tononi 2004a). According to him, certain ways of 
processing information are intrinsically integrated because 
they are going to be implemented in such a way that the 
corresponding causal processes are entangled together. 
Although still in its initial stage, Tononi’s approach may 
cast a new light on the notion of unity in an agent. 

E. Time, duration or present  
Conscious experience is located in time. Human beings 

experience the flow of time in a characteristic way that is 
both continuous and discrete. On one hand, there is the flow 
of time in which we float seamlessly. On the other hand, 
our cognitive processes require time to produce conscious 
experience. Surprisingly, there is evidence that half a 
second of continuous nervous activity is necessary in order 
to be visually aware of something (Libet 2004). 

Furthermore, the classic Newtonian time fits very loosely 
with our experience of time. According to Newton, only the 
instantaneous present is real. Everything had to fit in such 
Euclidean temporal point. Such a present has no duration. 
For instance, speed is nothing more than the value of a 
derivative and can be defined at every instant. We assume 
to occupy only an ever-shifting width-less temporal point. 
The Einstein-Minkowsky space-time model expresses this 
view (Minkowsky 1908) – time is a geometrical dimension 
in which the present is a point with no width. Such an 
instantaneous present cannot accommodate the long-lasting 
and content-rich conscious experience of present. 

Neuroscience faces similar problems. According to most 
neuroscientists, every conscious process is instantiated by 
patterns of neural activity extended in time. This apparently 
innocuous hypothesis hides a possible problem. If a neural 
activity spans in time (as it has to do so since neural activity 
consists in trains of temporally distributed spikes), 
something that takes place in different instants of time has 
to belong to the same cognitive or conscious process. For 
instance, what glue together the first and the last spike of a 
neural activity underpinning the perception of a face? 
Simply suggesting that they occur inside the same window 
of neural activity is like explaining a mystery with another 
mystery. What is a temporal window? And how does it fit 
with our physical picture of time? Indeed, it seems to be at 
odds with the instantaneous present of physics. 

In the case of machines, this issue is extremely 
counterintuitive. For instance, let us suppose that a certain 
computation is identical with a given conscious experience. 
What would happen if we would purposefully slow down 
the speed of such a computation? Certainly, we may 
envisage an artificial environment where the same 
computation runs at an altered time (for instance, we may 
slow down the internal clock of such a machine). Would the 
alleged conscious machine have a slowed but otherwise 
identical conscious experience? 

A related issue is the problem of the present. As in the 
case of brains, what does define a temporal window? Why 
are certain states part of the present? Does it depend on 
certain causal connections with behavior or is it the effect 
of some intrinsic properties of computations?  

Machine consciousness may require a change in our 
basic notion of time. 

F. Will, freedom, and mental causation 
Another issue, which does not math with the standard 

scientific picture of reality, is the fact that a conscious 
subject seems capable of a unified and free will. The topic 
is as huge as a topic can be (for a comprehensive review see 
Kane 2001). The problem connects with the so-called 
problem of mental causation and top-down causation. If a 
subject is nothing more than the micro-particles constituting 
it (and their state also), all causal powers are drained by the 
smallest constituents. In other words, you and I can’t have a 
will different from what all the particles constituting us do 
(Kim 1998). If this were true, there will be no space left for 
any level apart from the lowest one. All reality would be 
causally reduced to what happens at the micro-particles 
level. No top-down causation would be possible and no 
space would remain for the will.  

Yet, we have a strong (although possibly wrong) intuition 
that human beings are capable of influencing their behavior 
and thus that conscious will makes a difference in the 
course of events. Many philosophers defended conscious 
will efficacy (Searle 1992).  

Another threat for free will comes from Benjamin Libet’s 
famous studies that showed that awareness of one’s own 
choices follows neural activity by roughly 300 ms (Libet 
1985). Although Libet left open the possibility that our 
consciousness can veto brain deliberations, there is still a 
lot of controversy about the best interpretation of his 
experimental results.  

In short, a huge open problem is whether a system as a 
whole can have any kind of causal power over its 
constituents. Since consciousness seems to depend on the 
system as a whole, a theory of consciousness should be able 
to address the relation between wholes and parts.  

As to machines, the aforementioned issue is quite 
difficult. The classic mechanistic approach and several 
respected design strategies (from the traditional divide et 
impera rule of thumb, to sophisticated object-oriented 
programming languages) suggested to conceive machines 
as made of separate and autonomous modules. As a result, 
machines are expected to be cases of physical systems 
whereas the parts completely drain the causal power of the 
system as a whole. From this point of view, machines are 
completely unsuited to endorse a conscious will.  

However, two possible approaches can provide a viable 
escape route out of this blind alley.  

The first approach consists in recent connectionist 
approaches stressing the kind of connectivity between 
elementary computational units. According to such 
approaches, it could be possible to implement network 
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whose behavior would stem out of the integrated 
information of the system as a whole (Tononi 2004a). In 
short, machines would not have to be mechanistic, after all. 

The other approach stresses the teleological roles of 
certain feedback loops that could do more than classic 
control feedbacks. Here, the idea is to implement machines 
capable of modifying their teleological structure in such a 
way as to pursue new goals by means of a tight coupling 
with their environment. Thus, the behavior of the agent 
would be the result of all its history as a whole. There 
would not be separate modules dictating what the agent has 
to do, but rather the past history as a whole would reflect in 
every choice (Manzotti and Tagliasco 2005a). 

G. Representation 
One of the most controversial problem in philosophy of 

mind is that of representation. How is it possible that 
something represent something else? We face an apparent 
insurmountable problem. If the physical world were made 
only of extensional entities that do not refer to anything, the 
physical world could not possess any semantics. In fact, 
nobody knows why subject may have semantics in a 
physical world. The classic Searle’s argument suggests that 
machines could not have intrinsic intentionality and thus are 
devoid of semantics. If this were true, machines will never 
be conscious since they will be only syntactic engines. 
Unfortunately, at the best of our knowledge, the same 
arguments would rule out brain semantics, too. Why are 
brains different from machines? Searle’s suggestion that 
brains have special causal powers has never been too 
persuasive.  

Since it is a fact that we have a conscious representation 
of the world, it conceivable that we need to reframe our 
view about the physical world in order to accommodate the 
apparently impossible fact of representation. All attempts to 
naturalize semantics, intentionality, and representations 
(with all the known differences among these terms) either 
failed or did not succeed enough (Millikan 1984; Dretske 
1995; Fodor 1998; Tye 2002). How can symbols been 
grounded with other facts in the world (Harnad 1990; 
Harnad 1995)?  

It is curious that neuroscience is tempted by the 
metaphors introduced by computer science in order to 
provide (incomplete) explanations of the activity of the 
brain (Bennett and Hacker 2003). The current debate about 
the existence of a neural code or about mental imagery are 
deeply indebted with the computer science view of the mind. 
Why should there be a code in the brain and why should a 
code provide any justification of brain semantics? In short, I 
am suspicious of any argument that seems to apply different 
criteria in biological and in artificial contexts. 

In sum, to address the issue of conscious machines, we 
need to address the issue of representation avoiding any 
circularity. What does it change a physical process (or state) 
into a representation of another physical process (or state)? 

H. Feeling vs functing, or quantitative vs qualitative 
Finally, the allegedly most conspicuous problem – 

namely how can a physical system produce subjective 

qualitative phenomenal content? At sunset, we receive 
boring light rays on our retinas and we experience glorious 
symphony of colors. We swallow molecules of various 
kinds and, as a result, we feel the flavour of a delightful 
Brunello di Montalcino: 

Consciousness is feeling, and the problem of 
consciousness is the problem of explaining how and 
why some of the functions underlying some of our 
performance capacities are felt rather than just 
“functed.” (Harnad and Scherzer 2008) 

Famously, Galileo Galilei suggested that smells, tastes, 
colors, and sounds are nothing without the body of a 
conscious subject (Galilei 1623). The subject body 
allegedly creates phenomenal content in some unknown 
way. A very deep-rooted assumption is the separation 
between the domain of subjective phenomenal content and 
the domain of objective physical events. Such assumption 
deeply intertwines with the deepest epistemological roots of 
science itself. It is a dogma that a quantitative third-person 
perspective oblivious of any qualitative aspect can 
adequately describe physical reality. Yet, many scientists 
and philosophers alike questioned the soundness of such a 
distinction as well as our true understanding of the nature of 
the physical (Mach 1886; James 1905; Eddington 
1929/1935; Bohm 1990; Manzotti 2006; Strawson 2006). 

Whether the mental world is a special construct 
concocted by some irreproducible feature of most mammals 
is still an open question. There is neither empirical evidence 
nor theoretical arguments supporting such a view. In the 
lack of a better theory, many scholars wonder whether 
would not be wiser to take into consideration the rather 
surprising idea that the physical world comprehends also 
those features that we usually attribute to the mental domain 
(Skrbina 2009). In short, many suspects that some form 
either of panpsychism or of pan-experientialism ought to be 
seriously considered. 

In the case of machines, how is it possible to take over 
the so called functing vs. feeling divide (Lycan 1981; 
Harnad and Scherzer 2008)? As far as we know, a machine 
is nothing more than a collection of interconnected modules 
each functioning in a certain way. Why the functional 
activity should transfigure in the feeling of a conscious 
experience? Yet, as it happened for other issues, the same 
question may be asked about the activity of neurons. Each 
neuron, taken by itself, does not score a lot better than a 
software module or a silicon chip as to the emergence of 
feelings. So one possibility remains: it is not a problem of 
the physical world but rather of our picture of the physical 
world. We may discount a too simplistic view of the 
physical world. Machines are part of the same physical 
world that produced conscious human subjects, thus they 
could take advantage of the same relevant properties and 
features. 

I. Other issues 
It is clear that there is a very long list of correlated issued, 

which I couldn’t adequately address here – 1st person vs 3rd 
person perspectives, intentionality, qualia, relation between 
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phenomenal content and knowledge, special physical 
phenomena (usually described by quantum laws), mental 
imagery, meaning, symbol grounding, and so on. It is also 
true that, while some of these issues partially overlap with 
the above mentioned topics, some have their own 
specificity. In general, all problems share a similar structure 
with respect to machine consciousness: as long as 
something seems preventing a machine from being 
conscious, the same condition would deny a brain to be so. 
Yet, human beings are conscious and thus we should 
conclude that there must be some mistake in our 
assumptions about that conditions that apparently deny the 
very possibility of a conscious physical system. 

4. Current Approaches to Machine 
Consciousness 

Although the field is still in its infancy, a few attempts 
are worth of some consideration. This chapter does not 
pretend to provide an exhaustive description of these efforts. 
However, it will be sufficient to overview the ongoing 
projects. 

A. Autonomy and resilience 
A conscious agent is a highly autonomous agent. It is 

capable of self development, learning, self-observation. Is 
the opposite true?  

According to Sanz, there are three motivations to pursue 
artificial consciousness (Sanz 2005): 1) implementing and 
designing machines resembling human beings (cognitive 
robotics); 2) understanding the nature of consciousness 
(cognitive science); 3) implementing and designing more 
efficient control systems. The third goal overlaps with the 
issue of autonomy. A conscious system has to be able to 
take choices in total autonomy as to its survival and the 
achievements of its goals. Many authors believe that 
consciousness endorses a more robust autonomy, a higher 
resilience, a more general problem solving capability, 
reflexivity, and self-awareness. 

A conscious agent is thus characterized by a strong 
autonomy that often leads also to resilience to an often huge 
range of disturbances and unexpected stimuli. Many authors 
addressed these aspects trying to focus on the importance of 
consciousness as a control system. Taylor stressed the 
relation between attention and consciousness (Taylor 2002; 
Taylor 2007; Taylor 2009) that will be sketched at greater 
length below. Sanz et al. aims to develop a full-fledged 
functional account of consciousness (Sanz 2005; Sanz, 
Lopez et al. 2007; Hernandez, Lopez et al. 2009). 
According to their view, consciousness necessarily emerges 
from certain, not excessively complex, circumstances in the 
dwelling of cognitive agents. Finally, it must be quoted 
Bongard who is trying to implement resilient machines able 
to recreate their internal model of themselves (Bongard, 
Zykov et al. 2006). Though he does not stress the link with 
consciousness, it has been observer that a self-modeling 
artificial agents has many common traits with a self-
conscious mind (Adami 2006). 

B. Phenomenal experience in machines 
What about explicitly addressing phenomenal experience 

in machines? There are two approaches, apparently very 
different: the first approach tries to mimic the functional 
structure of a phenomenal space (usually vision). The 
advantage is that it is possible to build robots that exploit 
the phenomenal space of human beings. For instance, 
Chrisley is heralding the notion of synthetic 
phenomenology as an attempt “either to characterize the 
phenomenal states possessed, or modeled by, an artifact 
(such as a robot); or 2) any attempt to use an artifact to help 
specify phenomenal states”. (Chrisley 2009a, p.53) 
Admittedly, Chrisley does not challenge the hard problem. 
Rather his theory focuses on the sensori-motor structure of 
phenomenology. Not so differently, Igor Alexander 
defended various versions of depictive phenomenology 
(Aleksander and Dunmall 2003; Aleksander and Morton 
2007) that suggest the possibility to tackle from a functional 
point of view the space of qualia.  

Another interesting and related approach is that pursued 
by Antonio Chella who developed a series of robots aiming 
to exploit sensorimotor contingencies and externalist 
inspired frameworks (Chella, Gaglio et al. 2001; Chella, 
Frixione et al. 2008). An interesting architectural feature is 
the implementation of a generalized closed loop based on 
the perceptual space as a whole. In other words, in classic 
feedback only a few parameters are used to control robot 
behavior (position, speed, etc.). The idea behind the robot is 
to match a global prediction of the future perceptual state 
(for instance by a rendering of the visual image) with the 
incoming data. The goal is to achieve a tight coupling 
between robot and environment. According to these models 
and implementations, the physical correlate of robot 
phenomenology would not lie in the images internally 
generated but rather in the causal processes engaged 
between the robot and the environment (Chella and 
Manzotti 2009).  

C. Self motivations 
It is a fact that artificial agents do not develop their own 

goals and thus it is fair to suspect that there is a strong link 
between being conscious and developing new goals. Up to 
now there was a lot of interest as to how to learn achieving 
a goal in the best possible way, but not too much interest as 
to how develop a new goal. For instance, in their seminal 
book on neural network learning processes Richard S. 
Sutton and Andrew G. Barto stresses that they design agent 
in order to “learn what to do – how to map situations to 
actions – so as to maximize a numerical reward signal [the 
goal] […] All learning agents have explicit goals” (Sutton 
and Barto 1998, p.3-5). In other words, learning deals with 
situations in which the agent seeks “how” to achieve a goal 
despite uncertainty about its environment. Yet the goal is 
fixed at design time. Nevertheless, there are many situations 
in which it could be extremely useful to allow the agent to 
look for “what” has to be achieved – namely, choosing new 
goals and developing corresponding new motivations. In 
most robots, goals are defined elsewhere at design time 
(McFarland and Bosser 1993; Arkin 1998) but, at least, 
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behavior changes according to the interaction with the 
environment.  

Interestingly enough, in recent years various researchers 
tried to design agents capable of developing new 
motivations and new goals (Manzotti and Tagliasco 2005; 
Bongard, Zykov et al. 2006; Pfeifer, Lungarella et al. 2007) 
and their efforts were often related with machine 
consciousness. 

D. Information integration 
A possible and novel approach to this problem is the 

notion of integrated information introduced by Tononi 
(Tononi 2004). According to him, certain ways of 
processing information are intrinsically integrated because 
they are going to be implemented in such a way that the 
corresponding causal processes get entangled together. 
Although still in its final stage, Tononi’s approach could 
cast a new light on the notion of unity in an agent. Tononi 
suggested that the kind of information integration necessary 
to exhibit the kind of behavioural unity and autonomy of a 
conscious being is also associated to certain intrinsic causal 
and computational properties which could be responsible 
for having phenomenal experience (Tononi 2004). 

E. Attention 
If consciousness has to play a role in controlling the 

behaviour of an agent, a mechanism that cannot be 
overlooked is attention control. Attention seems to play a 
crucial role in singling out to which part of the world to 
attend. However, it is yet unclear what is the exact relation 
between attention and consciousness. Though it seems that 
there cannot be consciousness without attention (Mack and 
Rock 1998; Simons 2000), there is not sufficient evidence 
to support the thesis of the sufficiency of attention to 
bestow consciousness. However, implementing a model of 
attention is fruitful since introduces many aspects from 
control theory that could help in figuring out what are the 
functional advantages of consciousness. This is of the 
utmost importance since any explanation of consciousness 
should be tied down to suitable functional ground truth. A 
satisfying attention control mechanism could satisfy many 
of the abovementioned goals of consciousness such as 
autonomy, information integration, perhaps intentionality. 

A promising available model of attention is the CODAM 
neural network control model of consciousness whose main 
is to provide a functional account (Taylor and Rogers 2002; 
Taylor 2003; Taylor 2007). Such model has several 
advantages since it suggests various ways to speed up the 
response and the accuracy of the agent.  

A main advantage of the CODAM neural network 
control model is that it provides suggestions as to how the 
brain could implement it. The central idea is that the 
functional role of the attention copy signal is endorsed by 
the corollary discharge of attention movement (which is the 
reason of the name of the model). The possible neural basis 
of the CODAM has been addressed at length by Taylor 
(Taylor 2000; Taylor and Rogers 2002; Taylor 2003; Taylor 
2007).  

F. Global workspace and other cognitive models 
A huge area is represented by cognitive models based on 

some kind of central control structure – often based on the 
Global Workspace model (Baars 1984) and other likewise 
cognitive structure. A well-known examples is is Stan 
Franklin’s IDA whose goal is to mimic many high-level 
behaviors (mostly cognitive in the symbolic sense) 
gathering together several functional modules. In IDA’s 
top-down architecture, high-level cognitive functions are 
explicitly modeled (Franklin 1995; Franklin 2003). They 
aim at a full functional integration between competing 
software agencies. However, IDA is essentially a 
functionalist effort. We maintain that consciousness is 
something more than information processing – it involves 
embodiment, situatedness and physical continuity with the 
environment in a proper causal entanglement. 

Consider now Gerard Baars’ Global Workspace as it has 
been implemented by Murray Shanahan (Shanahan and 
Baars 2005; Shanahan 2006). Shanahan’s model addresses 
explicitly several aspects of conscious experience such as 
imagination and emotion. Moreover, it addresses the issue 
of sensory integration and the problem of how information 
is processed in a centralized workspace. It is an approach 
that, on the one hand, suggests a specific way to deal with 
information, on the other hand, endorses internalism to the 
extent that consciousness is seen as the result of internal 
organization. Consciousness, in short, is a style of 
information processing (the bidirectional transfer of 
information from/to the global workspace)  achieved 
through different means – “conscious information 
processing is cognitively efficacious because it integrates 
the results of the brain’s massively parallel computational 
resources” (Shanahan 2006, p. 434). He focuses on 
implementing a hybrid architecture mixing together the 
more classic cognitive structure of global workspace with 
largely not symbolic neural networks.  

5. What is AI still missing? 
Although AI achieved impressive results (Russell and 

Norvig 2003), it is always astonishing the degree of 
overvaluation that many non-experts seem to stick to. In 
1985 (!), addressing the Americal Philosophical Association, 
Fred Drestke was sure that “even the simple robots 
designed for home amusement talk, see, remember and 
learn” (Dretske 1985, p. 23). It is not unusual to hear that 
robots are capable of feeling emotions or taking 
autonomous and even moral choices (Wallach and Allen 
2009). It is a questionable habit that survives and that 
conveys false hopes about the status of AI research. For 
instance, in a discussion about machine consciousness, it 
has been claimed that not even research-grade robots, but 
rather Legobots used in first-year undergraduate robot 
instruction should be able to develop new motivations 
(Aleksander, Awret et al. 2008a, p. 102-103). If this were 
true, why do not autonomous machines developing their 
own agenda in order to deal with their environment 
surround us?  
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Such approximate misevaluation of the real status of AI 
hinders new researchers from addressing objectives 
allegedly but mistakenly assumed as already achieved. Due 
to various motivations not all of strict scientific nature, in 
the past, many AI researchers made bold claims about their 
achievements so to endorse a false feeling about the 
effective level of AI research.  

In AI, various misunderstandings hamper most 
approaches to machine consciousness. I list here the 
possible methodological mistakes that are specific to the 
field of machine consciousness. 

A. “False goals” 
Due to its vagueness and intrinsic difficulty, the issue of 

consciousness has often downgraded to some more tractable 
aspect. This is an example of the mereological fallacy that 
consists in confusing a problem with a part of it. For 
instance, it is true that often a conscious agent is also an 
autonomous agent. However, are we sure that an 
autonomous agent is necessarily a conscious one? Similar 
arguments suggest a more cautious approach for other 
capacities and aspects presented as more or less sufficient 
for conscious experience: autonomy, embodiment, 
situatedness, resilience, and so on.  

Whether or not consciousness can be reduced to certain 
capacities or features that are often correlated with the 
existence of a conscious agent is, to say the least, rather 
obscure. Along these lines, Giulio Tononi and Cristof Koch 
argued that consciousness does not require many of the 
skills that AI researchers strive to emulate in machines 
(Koch and Tononi 2008, p. 50) 

Remarkably, consciousness does not seem to require 
many of the things we associate most deeply with 
being human: emotions, memory, self-reflection, 
language, sensing the world, and acting in it. 

The issue is still controversial. Most machine consciousness 
enthusiasts would probably argue against such view – more 
prominently those that associate conscious agency with the 
capacity either to integrate cognitive skills (Baars 1988; 
Haikonen 2003; Shanahan 2005b) or to be autonomous, 
resilient, and embodied (Sanz 2005; Bongard, Zykov et al. 
2006).  

B. Labeling 
Very often cognitive scientists, roboticists and AI 

researchers shows their architecture labeling their boxes 
with intriguing and suggestive names: “emotional module”, 
“memory”, “pain center”, “neural network”, and so on. 
Unfortunately, labels on boxes in architecture models 
constitute empirical and theoretical claims that must be 
justified elsewhere. To use Dennett’s terminology they are 
“explanatory debts that have yet to be discharged” (Dennett 
1978).  

Even an uncontroversial term such as “neural network” is 
loaded with vague references to biological assumptions. 
The very choice of the name endorses a series of 
expectations. Probably, if neural networks had been 
introduced under the sober name of “not linear functional 

approximator”, their explanatory power would not have 
been the target of high expectations.  
Similarly, a frequent, and often reasonable, complaint from 
machine consciousness skeptics addresses the liberal use of 
not always justified labels. 

C. Confusion between ontological and explanatory 
levels 

It is easy to accept the existence of multiple levels of 
reality co-existent in the same physical system. Why should 
we not talk of bits or numbers or even images and sounds 
when referring to computer memories? Yet the explanatory 
power of multiple levels ought not to be confused with their 
reality. It is well known that such use could be a powerful 
source of confusion (Bennett and Hacker 2003). The use of 
language is not innocent. 

For instance, are images really inside a computer 
memory? Are values inside computers really symbols or 
characters or whatever we take them to be? From a physical 
perspective, there are different levels of tensions in small 
capacitors. From another perspective, there are logical 
values in logical gates. Getting higher and higher, we obtain 
bits, numbers, array, RGB triplets, and even music and 
images. We could get even higher and consider the 
existence of images having a certain content. Yet, are all 
these levels real or are they just different epistemic 
perspectives on the same phenomenon?  

The trouble is that most of these levels – bits, logical 
values, numbers, RGB triplets - are properties off a way of 
thinking about what takes place in our computer; they are 
not properties of the computer as such. What we think for 
quite naturally as two pixels in an image are nothing but 
two tensions causally related with what happens on a 
computer screen. On this Zenon Pylyshyn wrote  

The point here is not that a matrix representation is 
wrong. It’s just that it is neutral with respect to the 
question of whether it models intrinsic (i.e. 
architectural) properties of mental images. (Pylyshyn 
2003, p. 365) 

In short all these levels may be akin to a center of mass, 
insofar as centers of mass do not exist but are simply 
epistemic shortcuts to refer to complex mass distributions. 
In the case of machine consciousness, the problem cannot 
be postponed since there is, at least, one level that should be 
real: the level of conscious experience. Yet, why is it real? 
It is not easy to resist to the reductionist pull draining out 
from every level except the physical one.   

D. Inside and outside 
Finally, where is the mind and its content located? Inside or 
outside the body of the agent? So far, both options are not 
entirely satisfactory and thus the debate keeps going on.  
On one side, it would be very simple if we could locate 
consciousness inside the body of the agent and thus inside 
future conscious machines. However, such view is not 
convincing since most mental states (very broadly speaking) 
are about something that appears to be external to the body. 
Therefore, mental states should somehow address external 
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states of affairs (Putnam 1975; Gertler 2007; Lenay and 
Steiner 2010) – whether they are concepts, thoughts, 
percepts, objects, events. Unfortunately, there are no 
available theories explaining how the arrow of the mind 
could hit the external world and, consequently, many 
authors opted for a completely internal view of the mind. 
Since the world cannot get in, either the mental world must 
be inside the agent from the beginning or it must be 
concocted inside (Fodor 1983; Metzinger 2003). All these 
positions can broadly be labeled as cases of internalism. 
On the other hand, consciousness refer to the external world 
that could be constitutive either as content or as vehicle. 
Maybe, it is so difficult to bring content inside the mind 
because it remains outside. So we should reframe our model 
of the agent such as to include the external world 
(Honderich 2006; Manzotti 2006; Clark 2008). Not only the 
content of our experience would lie outside our body, but 
also the vehicles responsible for consciousness may be 
totally or partially external to the agent’s body. Such a twist 
in our perspective about the limit of the agent endorses 
those views that consider embodiment and situatedness as 
relevant factors for a conscious machine. 

6. Conclusion 
I tried to outline the present and foreseeable future state 

of machine consciousness studies. As it should be clear, 
machine consciousness is a broad field that stretches and 
enlarges significantly the traditional ground for mind-body 
problem discussions. It is both a technological and a 
theoretical field since it addresses old and new problems 
using a different approach. Machine consciousness will 
push many researchers to reconsider some threads left loose 
by classic AI and cognitive science. It may also be that 
machine consciousness will succeed in shedding a new light 
on the thorny issue of consciousness. 
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Abstract 
The 2nd law of thermodynamic governs an open dynamical 
system at an isothermal equilibrium.  Helmholtz proved 
that such a system operates at the Minimum Free-
Helmholtz Energy (MFE) min 𝐻𝐻 ≡ 𝐸𝐸 − 𝑇𝑇𝑜𝑜𝑆𝑆, much like an 
efficient car engine.  An MFE engine has internal 
combustion energy E, with an exhaust entropy S operating 
at an optimum engine temperature 𝑇𝑇𝑜𝑜. We propose to model 
the human brain’s learning process according to the 
isothermal equilibrium, assigning an MFE cost function to 
associated input vector time series’, with unknown output 
features. We further examine the implication of modeling 
synaptic ion currents among neurons of various inter-
connection sizes for ‘grey matter boxes’ of arbitrary 
emissivity.  We compare these with the normal modes of a 
single back box Planck black-body of an ideal emissivity 
radiation curve.  As a result, we derive a Hebbian learning 
rule that is consistent with Donald Hebb’s original 
observation in neurophysiology a half century ago.  Such 
an Artificial Neural Network (ANN) enjoys a self-
referenced unsupervised learning process known as 
regularized Lagrange Constraint Neural Network (LCNN). 
We rigorously solve the space-variant, ill-posed inverse 
imaging problem called Blind Separation of Equivalent 
Planck Source’s (EPS’s).   

 
1. Introduction 

On Earth, the animals which can learn by experience 
seem to be equipped with: (1) warm blooded brains that 
provide steady kinetic transport for efficient cellular 
operations, and (2) the ‘power of paired sensors’ (pops) 
which gather vector time series data  X���⃗ 𝐒𝐒𝐢𝐢(t)  for self-
referenced unsupervised learning.  Likewise, humans have 
symmetrical vector time series sensors (ears, eyes, nostrils, 
olfactory bulbs, taste buds, limbs extremities) which 
communicate with each other through the nervous system.  
The nervous system and the brain must be kept at 
isothermal equilibrium, 𝑇𝑇𝑜𝑜 = 37𝑜𝑜𝐶𝐶 .  These are necessary 
but not sufficient conditions for intelligent beings.  A 
higher temperature does not necessarily imply smarter or 
quicker learning.  For example, the chicken’s brain is in 
equilibrium at 40𝑜𝑜𝐶𝐶  but they lack the hands and tools 
necessary to be smarter than humans.  

Almost all imaging at a distance produces imagery 
having an unknown mixture of Equivalent Planck Sources  

 
 
 
 
 
 
 
 
 

(EPSs) of arbitrary emissivity [proved in Sect. 1.2]. Solving 
the inverse imaging problem requires thermodynamic 
learning rules. 

It turns out that physics dealt with efficient measurement 
that took into account of robust and reliable results.  The 
linear programming used in compressive sensing [1,2,3] 
turns out to be a linear approximation of the MFE cost 
function [proved in Remark #2]: 

𝑚𝑚𝑚𝑚𝑚𝑚.     𝐻𝐻 = 𝐸𝐸 – 𝑇𝑇𝑜𝑜𝑆𝑆,  (1) 
The MFE is like an efficient car engine which has an 
internal combustion energy E, an exhaust entropy S, which 
operates at the optimum engine temperature 𝑇𝑇𝑜𝑜.  

Eq.(1) included CRT&D CS as a special case when (1) 
the negentropy, –S, was the convex hull L1 minimization 
−𝑇𝑇𝑜𝑜𝑆𝑆 ≈ 𝑇𝑇𝑜𝑜 ∑ < 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑖𝑖 >𝑆𝑆𝑖𝑖  

𝑘𝑘
𝑖𝑖 , because the class entropy must 

be real positive (−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 ≥ 0; 𝑠𝑠𝑖𝑖 ≤ 1); and (2) the internal 
energy E is analytic function of which the first order Taylor 
series expansion assumes the linear error slope: 

 µj�𝑠𝑠(𝑜𝑜)� ≡ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑗𝑗
�
𝑠𝑠=𝑠𝑠(𝑜𝑜)

≈ �𝑠𝑠𝑗𝑗 − 𝑠𝑠𝑗𝑗
(𝑜𝑜)�,   (2a) 

which becomes the LMS L2 similarity.  

 𝐸𝐸 = 𝐸𝐸𝑜𝑜 + ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

(𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖
(𝑜𝑜)𝑘𝑘

𝑖𝑖=1 )    

        = 𝐸𝐸𝑜𝑜 + ∑ (𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖
(𝑜𝑜))(𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖

(𝑜𝑜)𝑘𝑘
𝑖𝑖=1 ) 

= 𝐸𝐸𝑜𝑜 + |�𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖
(𝑜𝑜)�|2               (2b) 

In this paper, we have generalized Eq.(2) with a non-linear 
2nd order Lagrange Constrained Neural Network (LCNN). 

1.1 Application of Planck Law to the“Brain in Box” 
Planck discovered a unique irradiance distribution which 

peaked at a unique wavelength for each isothermal 
temperature of a perfectly emissive black body, at unit 
emissivity 𝜀𝜀 = 1. We compare Planck’s fixed black body 
resonator cavity at arbitrarily constant temperature with our 
brain. Our brain is kept at a fixed isothermal equilibrium at 
37𝑜𝑜𝐶𝐶 , but consists of different sized grey-matter 
interconnection boxes having arbitrary emissivity 0 < 𝜀𝜀 ≤
1.  Despite our grey matter box is not an ideal black body, 
we suspected this unique peak might be true as long as an 
arbitrary grey matter body box has a unknown but fixed 
emissivity [proved in Theorem 1].  In addition to Planck, 
our inspiration comes from the ‘big-bang’ perspective of 

Tutorial 
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the universe; expanding incessantly without an outside 
boundary to reflect back any outgoing electromagnetic 
waves.  The Chinese philosopher Lao-tze once said that the 
largest has no outside while the smallest has no inside.  
Therefore, the universe cannot be ideal black body but at 
best a grey body.  Nobel Laureates Arno Penzias and 
David Wilson of Bell Lab measured the comic background 
radiation and found it is indeed peaked at the twelve 
hundred microns wavelength (1.2 mm at 160 GHz) having 
the apparent brightness temperature at 𝜀𝜀𝑇𝑇𝐾𝐾 = 0.91𝑥𝑥3𝑜𝑜 =
2.73𝑜𝑜  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  at the non-ideal emissivity 𝜀𝜀~0.91[Remark 
#4]  Our EEG brainwaves are mediated by synaptic ion 
currents within different sizes of functional grey matter 
boxes of arbitrary emissivity filled with neurons.  The 
largest box is the Left logical & Right artistic Hemispheres 
of the size of 7 cm; associative memory Hippocampuses at 
3 cm; the ‘emotional’ Amygdala at 2 cm; and the smallest 
may be the Pituitary gland grey matter box clock cycles at 
1cm.  Consequently, our brains support mixture of 
different modes: delta (0-4 Hz); theta (4-7 Hz); alpha (8-
12Hz); beta (13-30 Hz). Another interesting observation is 
that all EEG waves have peak frequencies which are 
separated equally by 4 Hz intervals.  This could correspond 
to fundamental topological structures among sub-grey-
matter boxes.  

Our mental activity is thought to be an unknown mixture 
of EEG waves which co-exist at an isothermal equilibrium 
that might generate like EPS’s with various peaks mixture 
along the full em spectrum.  Human brains can now be 
non-invasively monitored by a wireless baseball hat, 
equipped with dry nano-electrodes which utilize a 
compressive sensing algorithm of sparse linear 
combinations of EEG signals[4]. However, no one has 
systematically analyzed brainwaves from the inter-nested, 
“Pandora’s brain” made of arbitrarily sized grey matter and 
fixed emissivity viewpoints.  Thus, the myth of telepathy 
as a ‘super-resonance’ among different “Pandora’s brains” 
remains.  The simple physics is given for the collaboration 
with neurophysiologists. 

Planck’s law described a quantized set of simple normal 
modes of electromagnetic (em) waves that oscillate within a 
black-body resonator cavity, realizing the vanishing em-
amplitudes at a constant wall temperature 𝑇𝑇𝐾𝐾 , kept by an 
outside large heat reservoir. The Planck heat source is an 
ideal black box resonator.  It supports all positive integer 
numbers 𝑛𝑛 = 𝐼𝐼+  of harmonic wavelengths 𝜆𝜆 = 𝑐𝑐𝑜𝑜

𝑛𝑛𝑛𝑛
 like a 

violin string vibrating at the fundamental frequency 𝜈𝜈 and 
the constant speed 𝑐𝑐𝑜𝑜: �𝜆𝜆 = 𝑐𝑐𝑜𝑜

𝑛𝑛𝑛𝑛
�𝑛𝑛 = 𝐼𝐼+�.  Use was made of 

Einstein n-photon energy formula:  𝐸𝐸 ⟹ 𝐸𝐸𝑛𝑛 = 𝑛𝑛ℎ𝜈𝜈  to 
compute Maxwell-Boltzmann probability: exp �− 𝐸𝐸

𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾
� ≡

𝑧𝑧𝑛𝑛 , resulted in an infinite geometric series of 𝑧𝑧 ≡
exp (− ℎ𝜈𝜈

𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾
): 

𝑧𝑧1 + 𝑧𝑧2 + 𝑧𝑧3 + ⋯ = 𝑧𝑧(1 + 𝑧𝑧 + 𝑧𝑧2+. . ) = 𝑧𝑧
1−𝑧𝑧  =  1

𝑧𝑧−1−1
  (1) 

where the fluctuating vacuum state  𝑛𝑛 = 0  was 
intentionally excluded to result in 𝑧𝑧−1 other than z in Eq.(1) 

[cf. Remark 6].  Multiplying the density of states  2ℎ𝜈𝜈
3

𝑐𝑐𝑜𝑜2
, 

Planck derived rigorously and reproduced early laws: 

𝐼𝐼𝜈𝜈(𝑇𝑇𝐾𝐾) =
2ℎ𝜈𝜈3

𝑐𝑐𝑜𝑜2
1

exp �+ ℎ𝜈𝜈
𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾

� − 1 
 

= �
2ℎ𝜈𝜈3

𝑐𝑐𝑜𝑜2
exp �− ℎ𝜈𝜈

𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾
� ; ℎ𝜈𝜈 ≫ 𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾;  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑙𝑙𝑙𝑙𝑙𝑙  

2𝜈𝜈2𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾;  ℎ𝜈𝜈 ≪ 𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾  ;  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ − 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐿𝐿𝐿𝐿𝐿𝐿 
  (2) 

                   (UV catastrophe Ehrenfest)  Q.E.D. 
where Planck’s constant h =4.1 × 10-15 eV sec; 𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾 =
1
40
𝑒𝑒𝑒𝑒 at room 𝑇𝑇𝐾𝐾 = 300 and thus Boltzmann 𝐾𝐾𝐵𝐵 ≈

 0.1 𝑚𝑚𝑚𝑚𝑚𝑚 . 

Theorem 1: Image Processing by Equivalent 
Planck Sources (EPRs) 

If we define the observed apparent irradiance in terms of 
an apparent brightness temperature 𝑇𝑇𝐵𝐵𝜈𝜈 , then the apparent 
irradiance 𝐼𝐼𝐵𝐵𝜈𝜈 is a percentage of true blackbody irradiance 
that is reduced by incomplete thermal accommodation of 
absorbed and re-emitted radiation.  This causes a non-zero 
boundary condition and non-ideal emissivity 0 < 𝜀𝜀𝜈𝜈 ≤ 1: 

𝐼𝐼𝐵𝐵𝜈𝜈(𝑇𝑇𝐵𝐵𝜈𝜈) ≡ 𝜀𝜀𝜈𝜈𝐼𝐼𝜈𝜈(𝑇𝑇𝐾𝐾)   (3) 
Given that Planck sources have unit emissivity, then grey 
bodies have an arbitrary emissive source which is uniquely 
defined by the EPS of apparent brightness temperature in 
proportional to the grey body emissivity multiplied with the 
ideal Blackbody Temperature: 

𝑇𝑇𝐵𝐵𝜈𝜈𝑜𝑜 ≅  𝜀𝜀𝜈𝜈𝑜𝑜𝑇𝑇𝐾𝐾    (4) 

PROOF:  
Use was made of Planck’s law Eq.(2) and the definition of 
apparent irradiance for 0 < 𝜀𝜀𝜈𝜈𝑜𝑜 ≤ 1 Eq.(3), 

𝜀𝜀𝜈𝜈𝑜𝑜 �exp � ℎ𝜈𝜈𝑜𝑜
𝐾𝐾𝐵𝐵𝑇𝑇𝐵𝐵𝜈𝜈𝑜𝑜

� − 1� = (exp ( ℎ𝜈𝜈𝑜𝑜
𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾

) − 1); 

𝑇𝑇𝐵𝐵𝜈𝜈𝑜𝑜𝐾𝐾𝐵𝐵 

ℎ𝜈𝜈𝑜𝑜
= 1

𝐿𝐿𝐿𝐿𝐿𝐿�1+ 
exp� ℎ𝜈𝜈𝑜𝑜

𝐾𝐾𝐵𝐵𝑇𝑇𝐾𝐾
�−1 

𝜀𝜀𝜈𝜈𝑜𝑜
�

. 

Fig.1 plotted the apparent brightness temperature  𝑇𝑇𝐵𝐵𝜈𝜈𝑜𝑜  
against the black body Kelvin temperature 𝑇𝑇𝐾𝐾  at the peak 
emissivity 𝜀𝜀𝜈𝜈𝑜𝑜in 10% increments.        Q.E.D. 

1.2 Mixing Matrix 

We measured day color triplets per pixel 𝑋⃗𝑋𝒔𝒔=(Blue: 0.2~0.3 
µm; Green: 0.3~0.5µm and Red: 0.6~0.8 µm) or night 
infrared (IR) triplets 𝑋⃗𝑋𝒔𝒔=(MWIR: 3~5 µm, LWIR I: 8~10 
µm and LWIR II: 10~12 µm). We derived the unknown 
mixture of discrete heat sources associated with discrete 
temperatures in the percentage vector 𝑆𝑆 ⇒ 𝑆𝑆𝑗𝑗 ⟹ 𝑺𝑺��⃗ ;  𝑗𝑗 =
1,2,3, whose probability is related to the Boltzmann 
entropy formula derived in R,G,B color entities [Remark 
#3]. Typically, we had illuminating source 𝑆𝑆1, object body  
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Fig.1 Defining EPS, we plotted the Brightness temperature 
𝑇𝑇𝐵𝐵𝜈𝜈𝑜𝑜  versus the Kelvin Temperature 𝑇𝑇𝐾𝐾.  Setting unit ℎ𝜈𝜈𝑜𝑜/𝐾𝐾𝐵𝐵=1, 
we plot: 𝑦𝑦 = 1/𝐿𝐿𝐿𝐿𝐿𝐿(1 + 1

𝜀𝜀𝜈𝜈𝑜𝑜
(exp (1

𝑥𝑥
)−1))   from 1 to 1000, as we 

step emissivity 𝜀𝜀𝜈𝜈𝑜𝑜 ≤ 1 in 0.1 increments. 

 
Fig.2 Compressive Sensing by means of Equivalent Planck 
Sources (EPSs):  These virtual upper-down spectral 
extrapolations were possible because the peak wavelength 
associated one, and only one Kelvin Temperature in a single 
monotonic curve, where the left-shoulders are up-left-shifted to a 
shorter sub-micron wavelength toward X-rays.  Wilhelm Wien’s 
displacement law ~T^4 followed due to monotonic single peaks 
per Kelvin temperature, according to the dimensionality analysis 
of the integrated Eq.(2a). 
 
hot spot source 𝑆𝑆2, and other sensor coolant source 𝑆𝑆3, etc. 
in terms of Boltzmann entropy probability normalization 
1=𝑆𝑆1 + 𝑆𝑆2 + 𝑆𝑆3.  The mixing matrix mapped j-temperature 
sources to spectral i-components: 

𝑋⃗𝑋𝒔𝒔𝒊𝒊 = �𝐴𝐴𝑖𝑖,𝑗𝑗�𝑺𝑺��⃗ = 𝑆𝑆1 𝑎⃗𝑎(𝑇𝑇1) + 𝑆𝑆2 𝑏𝑏�⃗ (𝑇𝑇2) + 𝑆𝑆3𝑐𝑐(𝑇𝑇3)    (5) 
 

 
Fig.3 Three column vectors corresponding to three EPS associated 
equivalent brightness temperatures. 

 
The EPS temperature sources of mixing matrix [A] are 

usually not known for the generation of ground spectral 
data. The IR triplets per pixel as transposed (Tr) row 
vector  𝑋⃗𝑋𝑇𝑇𝑇𝑇 ≡ (𝑋𝑋1 𝑋𝑋2 𝑋𝑋3)  were measured at the center 
of each band value, i.e., 4 µm, 9 µm, and 11 µm, 
respectively, in Fig.2. The mixing matrix had three column 
vectors 𝑎⃗𝑎(𝑇𝑇1), 𝑏𝑏�⃗ (𝑇𝑇2), and 𝑐𝑐(𝑇𝑇3),  corresponding to three 
EPS associated equivalent brightness temperatures  
𝑎⃗𝑎(330𝑜𝑜𝐾𝐾), 𝑏𝑏�⃗ (265𝑜𝑜𝐾𝐾), and 𝑐𝑐(200𝑜𝑜𝐾𝐾) shown in Fig.3. For 
example, 

𝐗𝐗(pixel) ≡ �
𝑋𝑋1
𝑋𝑋2
𝑋𝑋3
� = [𝒂𝒂(𝑇𝑇1) 𝒃𝒃(𝑇𝑇2) 𝒄𝒄(𝑇𝑇3)]𝑺𝑺(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

≡ �
𝑎𝑎1 𝑏𝑏1 𝑐𝑐1
𝑎𝑎2 𝑏𝑏2 𝑐𝑐2
𝑎𝑎3 𝑏𝑏3 𝑐𝑐3

�  �
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
� 

= 10−5 �
67.46 4.65 0.05

502.82 152.39 21.41
449.86 168.13 33.61

� �
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
�. 

 
Each source 𝑆𝑆𝑗𝑗 might have different percentage values for 
each pixel such as  𝑆𝑆𝑇𝑇𝑇𝑇 = ( 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3) = (30%, 50%, 20%). 
The space-variant propagation defines an unknown mixing 
matrix that can vary in space from a group of pixels to 
others known as different isoplanar or Komogorov regions 
in astronomy imaging; while the unknown object sources 
could vary from sub-pixel to pixel for a high definition 
picture.    

Mathematically, Blind EPS Separation (BSS) is 
challenging because the mixing matrix [A] in Eq.(5), 
mapping the temperature sources to the spectral band values, 
was unknown for the case of remote sensing, and the 
inverse weight matrix is typically ill-conditioned:  

𝑆𝑆𝑗𝑗 = �𝑊𝑊𝑗𝑗,𝑖𝑖�𝑋⃗𝑋𝒔𝒔𝒊𝒊 , where �𝑊𝑊𝑗𝑗,𝑖𝑖�  = �𝐴𝐴𝑖𝑖,𝑗𝑗�
−1

    (6) 

The following theorems met the challenge.   
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2. Thermodynamic Learning Rule  
The key enabler of our new approach is resolving the 

‘Mexican Standoff’ slowdown, or in critical slow down 
during thermodynamic phase transition phenomena.  

LEMMA:  Due to unsupervised learning, the energy cost 
function is unknown for image processing at remote sensing.  
The first order Taylor series becomes 2nd order in the 
smallness, requiring the second order Taylor series 
expansion, curvature 𝐶𝐶𝑘𝑘, to determine the Lagrange error 
slope vector 𝜇𝜇𝛼𝛼 together with the estimation error which 
converges self-consistently.  

   𝑬𝑬 ≅ 𝑬𝑬(𝒐𝒐) + 𝜇𝜇𝛼𝛼��𝑊𝑊𝛼𝛼,𝛽𝛽�𝑋𝑋𝛽𝛽 − 𝑆𝑆𝛼𝛼
(𝑜𝑜)� 

+ 1
2
𝐶𝐶𝑘𝑘|�𝑊𝑊𝑖𝑖,𝛽𝛽�𝑋𝑋𝛽𝛽 − 𝑆𝑆𝑖𝑖

(𝑜𝑜)|2 ⟹ 𝑂𝑂(0)2;      (7) 

2.1  Critical Slowdown Phenomena 
When the state function is known, then the 1st order 

Taylor series derivative is of 1st order smallness.  However, 
Lagrange knew that the critical slowdown phenomena in 
thermodynamic phase transition occurred because the state 
function is unknown which required other expansion to 
determine it, causing the 1st order to become 2nd order in 
smallness. For example in BSS, the minimum of Helmholtz 
free energy,  𝑚𝑚𝑚𝑚𝑚𝑚.𝐻𝐻 = 𝐸𝐸 − 𝑇𝑇𝑜𝑜𝑆𝑆,  is expanded in a Taylor 
series with respect to unknown number of heat sources in 
terms of associated class entropy per pixel, 𝑺𝑺 ⟹
�𝑺𝑺𝑖𝑖 ⟷ 𝑺𝑺��⃗ = [𝑊𝑊]𝑿𝑿��⃗ 𝑠𝑠 �.  We applied the 1st order Taylor series 
of MFE of the unknown cost function E  

( 𝜕𝜕𝑬𝑬
𝜕𝜕𝑺𝑺𝛼𝛼

)�𝑺𝑺𝛼𝛼 − 𝑺𝑺𝛼𝛼
(𝑜𝑜)� ≡  𝝁𝝁𝛼𝛼𝒄𝒄𝛼𝛼(𝑺𝑺��⃗ ) ⟹ 𝑂𝑂(0)2,  (8)  

where the inner product involves the 2nd order smallness 
and it is difficult to determine the iteration involving both 
the data and the slope of data. Simultaneously, the unknown 
Lagrange energy slope vector flattens near the minimum 
with a zero slope 

𝝁𝝁𝛼𝛼�𝒔𝒔�⃗ (𝑜𝑜)� ≡  𝜕𝜕𝑬𝑬

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜) ⟹ 𝑂𝑂(0)     

together with the weighted learning of the s-spectral vector 
measurement data 𝑿𝑿��⃗ 𝒔𝒔 generating an learning error vector. 

 𝑐𝑐𝑖𝑖�𝒔𝒔�⃗ (𝑜𝑜)� ≡ �𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑖𝑖
(𝑜𝑜)� = �𝑊𝑊𝛼𝛼,𝛽𝛽�𝑿𝑿𝛽𝛽 − 𝒔𝒔𝛼𝛼

(𝑜𝑜) ⟹ 𝑂𝑂(0).  (9) 

Consequently, the 1st order of MFE involves 2nd order 
smallness in a product which becomes too small to 
determine whether it is the cause or the consequence about 
which one of the product to take the next step that 
approaches zero. Such double loops of iterations will suffer 
slow convergence, known in unsupervised learning of the 
artificial neural network (ANN) community with the 
nickname ‘Mexican standoff’, from wild western 
Hollywood movies.  Taylor expansion of the MFE Eq.(7) 
involved unknown internal energy E defines the linear slope 
as the Lagrange vector constraint of the error slope µ�⃗ j and 
the second order of smallness curvature as the Karush-like 
penalty function: 

𝐸𝐸 = 𝐸𝐸𝑜𝑜 + �
𝜕𝜕𝜕𝜕

𝜕𝜕𝒔𝒔𝑖𝑖
(𝑜𝑜) (𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑖𝑖

(𝑜𝑜)
𝐾𝐾

𝑖𝑖=1

)

+
1
2

𝜕𝜕2𝐸𝐸

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜)𝜕𝜕𝒔𝒔𝛽𝛽

(𝑜𝑜) �𝒔𝒔𝛼𝛼 − 𝑠𝑠𝛼𝛼
(𝑜𝑜)��𝒔𝒔𝛽𝛽 − 𝒔𝒔𝛽𝛽

(𝑜𝑜)� 

≅ 𝐸𝐸𝑜𝑜 + 𝛍𝛍α�𝒔𝒔�⃗ (𝑜𝑜)�(𝒔𝒔𝛼𝛼 − 𝒔𝒔𝛼𝛼
(𝑜𝑜)) + 1

2
𝐶𝐶𝑘𝑘|𝒔𝒔�⃗ − 𝒔𝒔�⃗ (𝑜𝑜)|2 ,    

𝜕𝜕2𝐸𝐸

𝜕𝜕𝑠𝑠𝑖𝑖
(𝑜𝑜)𝜕𝜕𝑠𝑠𝑗𝑗

(𝑜𝑜) ≅ 𝐶𝐶𝑘𝑘 𝛿𝛿𝑖𝑖,𝑗𝑗;  𝐶𝐶𝑘𝑘 = 𝛽𝛽𝑜𝑜𝐶𝐶𝑘𝑘−1;  

𝛽𝛽0 > 0; 𝑘𝑘 = 1,2,3, 𝑒𝑒𝑒𝑒𝑒𝑒.          (10) 
 

Theorem 2:  Hebb learning Rule of Neural 
Network Weight Matrix 

Given a measured s-spectral band vector per pixel 
location, 𝑿𝑿��⃗ 𝑠𝑠: we solve unknown heat sources  𝑺𝑺��⃗ = [𝑊𝑊]𝑿𝑿��⃗ 𝑠𝑠 
by Artificial Neural Network unsupervised leaning weight 
matrix update.  

𝑆𝑆 = [𝐴𝐴]−1𝑋⃗𝑋 ≡ [𝑊𝑊]𝑋⃗𝑋.      (11a) 
 

�Wi,j�
k+1 = �Wi,j�

k − 1
Ck

<µ��⃗ i
kX��⃗ j>

<�X��⃗ X��⃗ T�>
  (11b) 

PROOF: 

    𝐻𝐻(2) = 𝐸𝐸𝑜𝑜 +
𝜕𝜕𝜕𝜕

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜) �𝒔𝒔𝛼𝛼 − 𝒔𝒔𝛼𝛼

(𝑜𝑜)� 

                  +
1
2

𝜕𝜕2𝐸𝐸

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜)𝜕𝜕𝒔𝒔𝛽𝛽

(𝑜𝑜) �𝒔𝒔𝛼𝛼 − 𝒔𝒔𝛼𝛼
(𝑜𝑜)��𝑠𝑠𝛽𝛽 − 𝑠𝑠𝛽𝛽

(𝑜𝑜)� 

               +𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵�𝒔𝒔𝑖𝑖 log 𝒔𝒔𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ (𝜇𝜇𝑜𝑜 − 𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵)(�𝒔𝒔𝑖𝑖 − 1).
𝑘𝑘

𝑖𝑖=1

 

We may consistently vary 𝐻𝐻(2) w.r.t. Artificial Neural 
Network learning weight matrix: 

𝛿𝛿𝐻𝐻(2)

δWj,i
= 𝜇𝜇𝑗𝑗𝑋𝑋𝑖𝑖 + 𝐶𝐶𝑘𝑘{�𝑊𝑊𝑗𝑗,𝛼𝛼�𝑋𝑋𝛼𝛼 − 𝑠𝑠𝑗𝑗}Xi = 0 

We assume the Ergodic hypothesis that the temporal 
average of high frequency turbulent fluctuations is 
equivalent to the equilibrium ensemble average with the 
nearest neighbor 3x3 average, denoted with the angular 
brackets to make sure the outer product of pixel spectral 
vector to be full rank for non-singular inverse <
�𝑋⃗𝑋𝑋⃗𝑋𝑇𝑇� >−1.This was consistent with our image resolution 
assumption, a 3x3 neighborhood resolvable as a single 
space-invariant macro-pixel. 

< 𝜇𝜇𝑋⃗𝑋𝑇𝑇 > +𝐶𝐶𝑘𝑘[𝑊𝑊] < 𝑋⃗𝑋𝑋⃗𝑋𝑇𝑇 > −𝐶𝐶𝑘𝑘 < 𝑠𝑠𝑋⃗𝑋𝑇𝑇 >= 0; 

 [𝑊𝑊]𝑘𝑘+1 = �< 𝑠𝑠𝑋⃗𝑋𝑇𝑇 > − 1
𝐶𝐶𝑘𝑘

< 𝜇𝜇𝑘𝑘𝑋⃗𝑋 >� < �𝑋⃗𝑋𝑋⃗𝑋𝑇𝑇� >−1, (12) 

Use is further made of the definition of weight matrix:  𝑠𝑠 =
[𝑊𝑊]𝑋⃗𝑋 , and we can simply the first term of Eq.(12) and 
derived the learning rule Eq.(11b).       Q.E.D. 
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2.2  Remarks on Some Fundamental Concepts 
Hebbian Product Rule: Donald Hebb discovered that the 
neuro-biological synaptic junction learning rule is similar to 
a pipeline flow, that is proportional to how much goes in 
and how much comes out.  The Hebbian product learning 
rule: 

𝑊𝑊𝑖𝑖,𝑗𝑗 ∝ X��⃗ iµ�⃗ j. 

We demanded a proper normalization, i.e., 
<µ��⃗ i

kX��⃗ j>

<�X��⃗ X��⃗ T�>
→ 1, if  

µ�⃗ ik~X��⃗ i. 
What is the thermodynamic learning rule? It’s systematic 

way to guess the most probable inverse source solution by 
directly computing the maximum probability. By systematic 
trial and errors, we can de-mix the local mixtures by the 
MFE principle. There is a finite number of ways that the 
positive sum of a photon counts can be made. Among them, 
we choose the lowest energy cases, e.g., giving Beethoven 
first 3 notes  “ 5, 5, 1….” , we split the sum 5 = (0+5; 1+4; 
2+3; 3+2; 4+1; 5+0) in the unit of energy at temperature 
KBT=1/40eV for T=300o; and find hidden source tones 2+3 
and 3+2 occurring twice that  have the highest canonical 
probability 2 exp(-2/KBT)exp(-3/KBT).  In MFE, we might 
wish to rule out the rare high energy cases (0+5 and 1+4) in 
favor with lower energy, but higher chances in equilibrium  
(twice 2+3) unless other summations involve also these 
specific pixels. Given a set of vector measurements of 
multiple spectral bands, we applied the thermodynamic 
equilibrium theory to find hidden object sources at MFE by 
LCNN.  

Helmholtz MFE: Helmholtz assumed such an open 
dynamic sub-system within the heat reservoir closed system 
where Boltzmann heat death at maximum entropy was 
assumed. 

                  𝛥𝛥𝐻𝐻 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≡  𝛥𝛥𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  −  𝑇𝑇0𝛥𝛥𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 0 ;  

 min. 𝐻𝐻 ≡ 𝐸𝐸 − 𝑇𝑇𝑜𝑜𝑆𝑆        (13) 

PROOF: 
Let 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  denote the total entropy of a closed system. 
Then 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is the sum of entropy of reservoir and object, 

𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  =  𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  +  𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . 

If the object takes 𝛥𝛥𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  energy from its surroundings, 
the entropy change of 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  will be  𝛥𝛥𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
−𝛥𝛥𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝑇𝑇0 , and the total entropy change is 

    𝛥𝛥𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  =  𝛥𝛥𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  + 𝛥𝛥𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜   

                    = −
𝛥𝛥𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇0
 + 𝛥𝛥𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

    =  −
𝛥𝛥𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇0𝛥𝛥𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇0
=  −

𝛥𝛥𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

𝑇𝑇0
      (14) 

where 𝛥𝛥𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≡  𝛥𝛥𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  −  𝑇𝑇0𝛥𝛥𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is the change 
of the object’s Helmholtz free energy, which is an analytic 
state function defined by   𝐻𝐻 = 𝐸𝐸 –  𝑇𝑇𝑜𝑜𝑆𝑆 .  Note that 
𝛥𝛥𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 0 since the total entropy of a closed system is 

always increasing, and 𝛥𝛥𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 0 given a positive 𝑇𝑇0.     
        Q.E.D. 

Boltzmann Entropy: Ludwig Boltzmann inscribed on his 
tomb headstone the entropy formula (cf. a picture of his 
Math Genealogy)   

𝑆𝑆 =  𝐾𝐾𝐵𝐵  𝐿𝐿𝐿𝐿𝐿𝐿 𝑊𝑊;   ` 

where W is the aforementioned phase space trajectory 
volume that represents all possibility which an identical 
macroscopic system can be prepared and realized; and 𝐾𝐾𝐵𝐵 
is the Boltzmann constant, i.e., 0.1 meV. To be explicit for 
remote sensing, we considered 3 kinds of identical entities; 
R denotes the number of red balls/molecules/photons, 
likewise G & B in a closed system. Thus, the chance of 
realizing total N balls is N! divided by identical colors 
𝑅𝑅!𝐺𝐺!𝐵𝐵!, because of the over-counting of permutations with 
identical particles. 

𝑊𝑊 = 𝑁𝑁!
𝑅𝑅!𝐺𝐺!𝐵𝐵!

. 

Sterling approximation of logarithmic factorial was valid 
when N >10. 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁! ≅ 𝑁𝑁 𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁 − 𝑁𝑁;   

𝑁𝑁
𝑁𝑁

=
𝑅𝑅
𝑁𝑁

+
𝐺𝐺
𝑁𝑁

+
𝐵𝐵
𝑁𝑁

;   

1 =  𝑆𝑆1 + 𝑆𝑆2 + 𝑆𝑆3. 

Then, Boltzmann discrete entropy formula follows: 

𝑆𝑆 = −𝐾𝐾𝐵𝐵 ∑ 𝑆𝑆𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑖𝑖 −  const. (∑ 𝑆𝑆𝑖𝑖 − 1)𝑲𝑲
𝒊𝒊=𝟏𝟏

𝐾𝐾
𝑖𝑖=1 ;  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. =
𝜇𝜇𝑜𝑜
𝑇𝑇𝑜𝑜
− 𝐾𝐾𝐵𝐵  

where the minus sign was derived due to 𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑖𝑖 ≤ 0 for 
𝑆𝑆𝑖𝑖 ≤ 1 and the Lagrange scalar constraint of the probability 
norm ∑ 𝑆𝑆𝑖𝑖 − 1 = 0𝐾𝐾

𝑖𝑖=1   was chosen to be �𝜇𝜇𝑜𝑜
𝑇𝑇𝑜𝑜
− 𝐾𝐾𝐵𝐵� that 

insured the normalization and a simple slope:     

       
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆𝑖𝑖

 = −𝐾𝐾𝐵𝐵 �1 + � log 𝑆𝑆𝑖𝑖

𝐾𝐾

𝑖𝑖=1

� − �
𝜇𝜇𝑜𝑜
𝑇𝑇𝑜𝑜 

–𝐾𝐾𝐵𝐵�
 

 

               = −𝐾𝐾𝐵𝐵  log 𝑆𝑆𝑖𝑖 −  𝜇𝜇𝑜𝑜
𝑇𝑇𝑜𝑜 

       Q.E.D.  

The maximum entropy in a closed system corresponds to 
the minimum free energy in open sub-systems. 

Grey-Body Planck Law: Planck’s law was the triumph of 
modern quantum physics during 1900~1919.  Max Planck 
received the Nobel Prize in Physics in 1918.  A remarkable 
result which we exploited theoretically in this paper was 
that the spectral irradiance 𝐼𝐼𝜈𝜈(𝑇𝑇𝐾𝐾), leaking out of a small 
hole of the black body cavity’s opaque walls kept at a 
constant temperature, peaked at a single wavelength 
monotonically 𝜆𝜆𝑜𝑜 = 𝑐𝑐𝑜𝑜/𝜈𝜈𝑜𝑜  and that uniquely determines 
the associated Kelvin temperature 𝑇𝑇𝐾𝐾 once and only once in 
Fig.2. We were not the first one either. Astronomers applied 
the apparent measured brightness temperature  𝑇𝑇𝐵𝐵  related 
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by the unique peak spectrum value to an equivalent black 
body Kelvin temperature 𝑇𝑇𝐾𝐾 .  It turned out roughly 𝑇𝑇𝐵𝐵~𝜀𝜀𝑇𝑇𝐾𝐾 .  
Cosmic Background Radiation is not a blackbody for a 
large expanding universe having no outside, yet the 
estimation of an approximated reflectivity 𝛾𝛾~0.1 suggests 
by the conservation of energy, the equivalent emissivity is 
about 𝜀𝜀~0.9.  Nevertheless, the universe was cooled down 
after the Big Bang happened at 13B years; 380K years ago, 
the universe reached 3000K~0.25 eV, which is the time of 
hydrogen atoms were formed with 13.6 eV ionization 
energy (5% light mater, 27% dark mater, 68% dark energy).  
Thus, the background light did not have enough energy to 
become de-coupled from the hydrogen matter, and the 
universe became transparent.  As a result, the Cosmic 
Microwave Background Radiation (CMBR) can be 
observed and may be called the "time of last (inelastic) 
scattering."  The decoupled photons from matter are 
continuously cooled down 1000 times at now 2.7 oK 
~0.23meV corresponding to microwave range frequency of 
160.2 GHz(1.9 mm wavelength).  Robert Dicke, George 
Gamow, Ralph Alpher, and Robert Herman conjectured that 
CMBR was the inflationary Big Bang theory.  1978 Nobel 
Laureates Arno Penzias and David Wilson applied Dicke 
radiometry of 15 meter horn antenna to measure the peak at 
𝑇𝑇𝐵𝐵~2.73𝑜𝑜𝐾𝐾~0.9𝑥𝑥30𝐾𝐾 . Subsequently, NASA's Cosmic 
Background Explorer (COBE) satellite using differential 
microwave instruments confirmed an anisotropic CMBR 
(George Smoot & John Mather, Nobel Prize 2006). 

Quantum Statistics:  G.E. Uhlenbeck & S. Goudsmidt 
discovered in 1910 in the Stern & Gerlach experiment an 
electron beam split under an inhomogeneous magnetic field 
into 2 beans: spin up or spin down: that the spin fine 
structure constant  2𝑠𝑠 + 1 = 2  that implies the e-spin 
quantum number s=1/2. It suggested the e-wave function 
with the phase factor  𝑒𝑒𝑖𝑖(𝑛𝑛−1)𝜋𝜋 = (−1)𝑛𝑛−1  generates 
alternation signs in the Fermi-Dirac distribution function  

𝑧𝑧 − 𝑧𝑧2 + 𝑧𝑧3 − 𝑧𝑧4 + ⋯ = 𝑧𝑧(1 − 𝑧𝑧 + 𝑧𝑧2 − 𝑧𝑧3 + ⋯ ) 

                      = 𝑍𝑍
1+𝑍𝑍

 = 1
𝑍𝑍−1+1

= 1

exp�+ 𝐸𝐸
𝐾𝐾𝐵𝐵𝑇𝑇

�+1 
≤ 1   

for odd integer electron spin Fermion the Pauli’s exclusion 
principle, one pigeon per hole, and led to a finite Fermi 
surfaces as the Band gap phenomena in the semiconductors.  
Bose-Einstein condensation of integer spin Bosons is due to 
the friendship principle: the condensed ground state 
becomes divergent 1/[exp(+𝐸𝐸/𝐾𝐾𝐵𝐵𝑇𝑇) − 1] → ∞ , where 
𝐸𝐸/𝐾𝐾𝐵𝐵𝑇𝑇 → 0 .  BCS theory of superconductor of electron 
spin ½ was due to the lattice vibration of bounding two 
Fermions together called Cooper pairs, electrons or 
positrons which become a spin-1 Boson.  Paul Chu et al. 
discovered higher temperature superconductor made of 
ceramic 𝑌𝑌1𝐵𝐵𝐵𝐵2𝐶𝐶𝐶𝐶3𝑂𝑂𝑥𝑥  material whose lattice defects, 
positron holes, enjoyed a larger internal pressure due to a 
larger replaced 𝐵𝐵𝐵𝐵2  molecule, which bounded two 
Fermions together, by phonon exchange energy, into a spin-
1 Boson and sustained a disruptive thermal noise ≳ 77𝑜𝑜𝐾𝐾. 

Vacuum Fluctuation: Paul Ehrenfest wrote the 
corresponding principle between classical mechanics and 
quantum mechanics.  The Poison Bracket is related to 
Heisenberg uncertainty principle commutator between 
position 𝑃𝑃� and momentum 𝑄𝑄�  operators. It represented the 
effects of two different sequences of measurements.  It 
helped us quantized the Hamiltonian 𝐻𝐻� of simple harmonic 
oscillator in the quantum field theory in terms of 2nd 
quantization operators 𝑎𝑎�†:  𝐻𝐻� = 𝑃𝑃�2 + 𝑄𝑄�2 = �𝑃𝑃� + 𝑖𝑖𝑄𝑄���𝑃𝑃� −
𝑖𝑖𝑄𝑄�� = 𝑎𝑎�†𝑎𝑎� that computes the vacuum fluctuation due to the 
commutator uncertainty principle generating the non-zero 
vacuum energy  𝐻𝐻� �0 >= 1

2
ℎ𝑣𝑣� 0 >.  This zero-point 

vacuum fluctuation existed everywhere helped Higgs, 
following the Anderson phase transition model: 𝜙𝜙�4  ≈(𝜙𝜙�-
 𝜙𝜙+)2(𝜙𝜙� −  𝜙𝜙−)2 (having a lower potential well at 
symmetric ground state |𝜙𝜙+ > associated with a non-zero 
order parameter) condensing the energy into the mass 𝑚𝑚 =
𝐸𝐸/𝑐𝑐𝑜𝑜2  .  CERN experiments seemed to have verified the 
Higgs boson phase transition mechanism. 

3. Nonlinearly Regularized Lagrange Constraint 
Neural Network (LCNN) 

The Mexican standoff will be regularized by Karush, 
Kuhn-Tucker (KKT) 2nd order penalty by steepening an 
isotropic sphere.  CRT&D CS assumed that the Lagrange 
slope was the estimation error itself, and no longer is an 
unknown.  However, when the cost function is unknown, 
we have demonstrated the double iteration at the linear 
order is at 2nd order smallness, and therefore cannot 
consistently determined at the 1st order LCNN.  We 
identified the penalty as the 2nd order Taylor series of MFE.  
This generates a linearly decoupled closed set of 3 
equations for solving sources from spectral vector data, as a 
fast LANCELOT algorithm, called regulated LCNN (Szu, 
Miao, Qi, SPIE 2007). Given input s-spectral vector data 
𝑿𝑿𝑠𝑠 per pixel we give double iteration superscript index 𝑘𝑘 =
𝐼𝐼+ ≡ {1,2,3, 𝑒𝑒𝑒𝑒𝑒𝑒. }.  

Theorem  3: NL Regularized Lagrange Constraint 
Neural Network (LCNN) is a fast LANCELOT algorithm 
of nonlinear optimization.  Given lemma on ANN learning 
matrix �𝑊𝑊𝑗𝑗,𝑖𝑖�

𝑘𝑘  and the j-component 𝒄𝒄𝒋𝒋 of the EPS sources 
estimation error vector together, we determine the slope j-
component  𝝁𝝁𝑗𝑗𝑘𝑘 of the Lagrange error energy by iteration as;  

Hebbian rule:    

 �W𝑖𝑖,𝑗𝑗�
k+1 = �W𝑖𝑖,𝑗𝑗�

k − 1
Ck

<µ��⃗ 𝑖𝑖
k𝐗𝐗��⃗ 𝑗𝑗>

<�𝐗𝐗��⃗ 𝐗𝐗��⃗ T�>
;    (15) 

Lagrange error slope rule:   

  𝝁𝝁��⃗ 𝑗𝑗𝑘𝑘+1 =  𝝁𝝁��⃗ 𝑗𝑗𝑘𝑘 + 𝐶𝐶𝑘𝑘{�𝑊𝑊𝑗𝑗,𝛼𝛼
𝑘𝑘+1�𝑿𝑿��⃗ 𝛼𝛼 − 𝑺𝑺��⃗ 𝑗𝑗𝑘𝑘+1} ;  (16) 

Unknown object sources:    

 𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵 log S�⃗ 𝑗𝑗
k+1

+ 𝐶𝐶𝑘𝑘S�⃗ 𝑗𝑗
k+1

= 𝐶𝐶𝑘𝑘�W𝑗𝑗,α
k�𝐗𝐗��⃗ α + 𝛍𝛍��⃗ 𝑗𝑗

k − µ0k; 
 (17) 
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Curvature Penalty:      

 𝐶𝐶𝑘𝑘 = 𝛽𝛽𝑜𝑜𝐶𝐶𝑘𝑘−1; 𝛽𝛽0 > 0; 𝑘𝑘 = 1,2,3, 𝑒𝑒𝑒𝑒𝑒𝑒.          (18) 

PROOF: 

The tradeoff between minimum energy and maximum 
entropy for the most probable configuration requires the 1st 
and 2nd order Taylor series expansions:  

   𝐻𝐻(1) = 𝐸𝐸𝑜𝑜 +
𝜕𝜕𝜕𝜕

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜) �𝑠𝑠𝛼𝛼 − 𝒔𝒔𝛼𝛼

(𝑜𝑜)� 

     +𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵 ∑ 𝒔𝒔𝑖𝑖 log 𝒔𝒔𝑖𝑖𝑘𝑘
𝑖𝑖=1 + (𝜇𝜇𝑜𝑜 − 𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵)(∑ 𝒔𝒔𝑖𝑖 − 1)𝑘𝑘

𝑖𝑖=1  (19a) 

   𝐻𝐻(2) = 𝐸𝐸𝑜𝑜 +
𝜕𝜕𝜕𝜕

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜) �𝒔𝒔𝛼𝛼 − 𝒔𝒔𝛼𝛼

(𝑜𝑜)� 

     +
1
2

𝜕𝜕2𝐸𝐸

𝜕𝜕𝒔𝒔𝛼𝛼
(𝑜𝑜)𝜕𝜕𝒔𝒔𝛽𝛽

(𝑜𝑜) �𝒔𝒔𝛼𝛼 − 𝒔𝒔𝛼𝛼
(𝑜𝑜)��𝑠𝑠𝛽𝛽 − 𝑠𝑠𝛽𝛽

(𝑜𝑜)� 

+𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵 ∑ 𝒔𝒔𝑖𝑖 log 𝒔𝒔𝑖𝑖𝑘𝑘
𝑖𝑖=1 + (𝜇𝜇𝑜𝑜 − 𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵)(∑ 𝒔𝒔𝑖𝑖 − 1)𝑘𝑘

𝑖𝑖=1  (19b) 

We take variation calculus to set flattening extremes to be 
zero: 

𝛿𝛿𝐸𝐸(1) = 𝛿𝛿𝐸𝐸(1)

δ𝒔𝒔𝛽𝛽 (𝑜𝑜) 𝒄𝒄𝛽𝛽�𝒔𝒔�⃗ (𝑜𝑜)� ≡ 𝝁𝝁𝛽𝛽{�𝑊𝑊𝛽𝛽,𝛼𝛼�𝑿𝑿𝛼𝛼 − 𝒔𝒔𝛽𝛽(𝑜𝑜)}   (19c) 

𝛿𝛿𝐻𝐻(1) = 𝛿𝛿𝐻𝐻(1)

δ𝒔𝒔𝑗𝑗 
= −𝝁𝝁𝛽𝛽

𝛿𝛿𝒄𝒄𝛽𝛽
δ𝒔𝒔𝑗𝑗 

+ 𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵 log 𝒔𝒔𝑗𝑗 + 𝜇𝜇𝑜𝑜    (19d) 

    𝛿𝛿𝐻𝐻(2) = 𝛿𝛿𝐻𝐻(2)

δ𝑠𝑠𝑗𝑗 
= −(𝜇𝜇𝛽𝛽 + 𝐶𝐶𝑘𝑘�Wβ,α 𝑋𝑋𝛼𝛼 − 𝑠𝑠𝛽𝛽�

𝛿𝛿𝒄𝒄𝛽𝛽
δ𝑠𝑠𝑗𝑗 

      

                        +𝑇𝑇𝑜𝑜 𝐾𝐾𝐵𝐵 log 𝑠𝑠𝑗𝑗 + 𝜇𝜇𝑜𝑜   (19e) 

where use is made of isotropic curvature in an increasing 
constant penalty term for k+1 iteration: 𝐶𝐶𝑘𝑘+1 = 𝛽𝛽𝑜𝑜𝐶𝐶𝑘𝑘  ; 
𝛽𝛽𝑜𝑜 ≈ 4, and the simple component selection: 𝛿𝛿𝒄𝒄𝑖𝑖

δ𝒔𝒔𝑗𝑗 
= −δi,j . 

From the variation of 2nd order (19e) :  

δH(2) = 0: 

To KB log 𝐬𝐬j + Ck𝐬𝐬j = Ck�Wj,α�𝐗𝐗α + 𝛍𝛍j − µ0  (20a) 

From the variation of 1st order (19d): 

δH(1) = 0: 

𝛍𝛍j + To KB log 𝐬𝐬j + µo = 0        (20b) 

We obtain the consistency condition, after cancelling the 
entropy related common terms: To KB log 𝐬𝐬j + µo, the  next 
iteration of the 1st order Lagrange error energy slope 𝛍𝛍jk+1  
is determined by the 2nd order variation of MFE: 

𝛍𝛍jk+1 = 𝛍𝛍jk + Ck𝐜𝐜jk+1; 𝐜𝐜jk+1 = �Wj,α
k+1�𝐗𝐗α − 𝐬𝐬jk+1  (20c) 

This linear decoupled Lagrange error slope equation is 
historically called LANCELOT in FORTRAN massive 
database optimization.  The blind sources estimation error 
provided the next gradient descent of Lagrange energy error 
slope vector 𝛍𝛍jk . De-mixing weight matrix Eq.(15) was 
proved in Theorem 2.             Q.E.D.  

  

4. Conclusion 

This thermodynamics learning rule may be a paradigm 
shift for dealing with spectral image processing with 
thermodynamics.  Various applications have been 
developed and reported in different journals. It might allow 
us to consider virtually crossing the full electromagnetic 
spectrum.  Compressive modeling and simulation based on 
NL LCNN will be published in Optical Engineering 
(Krapels, Cha, Espinola, Szu).  IR triplets for seeing 
through hot fire and cold dust will be published in IEEE 
Tran IT (Cha, Abbott, Szu).  Thermodynamics physics 
laws and modern applications will be published in Journal 
of Modern Physics (Szu, Willey, Cha, Espinola, Krapels). 
Lots more can happen with your participation in Appendix 
A and Appendix B. MATLAB pseudo source code is given 
with benchmarked results. 
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Appendix A:  BSS by Engineering Filter Approach: 

Pixel Parallelism (at Maximum Output Entropy ) 

Bell, Sejnowski, Amari & Oja (BSAO) have 
systematically formulated an unsupervised learning of ANN 
algorithm for unknown but identical for space-invariant 
mixing by varying the unknown de-mixing weight matrix 
[𝑊𝑊𝑖𝑖.𝑗𝑗]  until nothing but the Max Entropy 𝑆𝑆(𝑦𝑦𝑖𝑖)  of the 
output 𝑦𝑦𝑖𝑖 = �𝑊𝑊𝑖𝑖,𝛼𝛼�𝑥𝑥𝛼𝛼 , where 𝑥𝑥𝑗𝑗 = �𝐴𝐴𝑗𝑗,𝛼𝛼�𝑠𝑠𝛼𝛼  with measured 
𝑥𝑥𝑗𝑗 and unknown �𝐴𝐴𝑗𝑗,𝛼𝛼� and 𝑠𝑠𝛼𝛼 .  Here, the repeated Greek 
indices represent the summation. ANN model used a 
monotonically sigmoid-squashed threshold output 

 𝑦𝑦𝑖𝑖 = 𝜎𝜎(𝑥𝑥𝑖𝑖) ≡ {1 + exp�−�𝑊𝑊𝑖𝑖,𝛼𝛼�𝑥𝑥𝛼𝛼�}−1. 

that is nonlinear analytic solution of Riccati equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
y(y − 1), for asymptotically binary logic 𝑦𝑦 = 0 𝑜𝑜𝑜𝑜 1 for no 
or yes.  Since a single neuron learning rule turns out to be 
massively parallel to N neurons in tensor index notion, for 
simplicity, we derived for a single neuron to point out why 
the engineering filter does not follow Hebb’s synaptic 
weight updates.  A bona fide unsupervised learning did not 
have a desirable specific output entropy S(y) became 
maximized, the de-mixing filtering [𝑊𝑊𝑖𝑖.𝑗𝑗]  becoming the 
inverse of unknown mixing matrix �𝐴𝐴𝑗𝑗,𝛼𝛼�.  Thus, the filter 
weight adjustment is defined as: 

𝛿𝛿𝛿𝛿
𝛿𝛿𝑡𝑡

= 𝜕𝜕𝜕𝜕(𝑦𝑦)
𝜕𝜕𝜕𝜕

,  S(𝑦𝑦) = −∫𝑓𝑓(𝑦𝑦) log 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑  

⟹ 𝛿𝛿𝛿𝛿 = 𝜕𝜕𝜕𝜕(𝑦𝑦)
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿 = {|𝑤𝑤|−1 + (1 − 2𝑦𝑦)𝑥𝑥}𝛿𝛿𝛿𝛿. 

Derivation:  From the normalized probability definitions: 

∫ 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 ; 𝑓𝑓(𝑦𝑦) = 𝑔𝑔(𝑥𝑥)

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
; 

𝐻𝐻(𝑦𝑦) ≡ −< log 𝑓𝑓(𝑦𝑦) >𝑓𝑓 , 

we expressed the output pdf in terms of the input pdf with 
changing Jacobian variables. We exchanged the orders of 
operation of the ensemble average brackets and the 
derivatives to compute  

𝜕𝜕𝜕𝜕(𝑦𝑦)
𝜕𝜕𝜕𝜕

=
𝜕𝜕<log�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�>𝑓𝑓

𝜕𝜕𝜕𝜕
≅ | 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
|−1

𝜕𝜕�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

𝜕𝜕𝜕𝜕
; 

Since Riccati equation was satisfied by the sigmoid: 𝑦𝑦 =
[1 + exp(−𝑤𝑤𝑤𝑤)]−1;  𝑑𝑑𝑑𝑑

𝑑𝑑(𝑤𝑤𝑤𝑤)
= 𝑦𝑦(1 − 𝑦𝑦), we readily derived 

the following results by chain rule 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑤𝑤𝑤𝑤(1 − 𝑦𝑦);
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝑥𝑥(1 − 𝑦𝑦). 

Substituting these results into Max Ent learning rule, one 
obtains the Bell-Sejnowski equation  

𝜕𝜕𝜕𝜕(𝑦𝑦)
𝜕𝜕𝜕𝜕

= [𝑊𝑊]−1 − (2𝑦𝑦 − 1).           Q.E.D. 

The first term computing the inverse matrix |𝑤𝑤|−1 is not 
scalable with increasing N nodes, while the second term 
satisfied the Hebbian product rule between bipolar output 
2y-1 and input x.  S. Amari et al. at RIKEN assumed the 
identity �𝛿𝛿𝑖𝑖,𝑘𝑘� = [𝑊𝑊𝑖𝑖,𝑗𝑗]�𝑊𝑊𝑗𝑗,𝑘𝑘�

−1
 and multiplied the identity 

through both sides of original non-biological algorithm 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑊𝑊𝑖𝑖,𝑗𝑗

[𝛿𝛿𝑖𝑖,𝑘𝑘] = {�𝛿𝛿𝑖𝑖,𝑗𝑗� − (2𝑦⃗𝑦 − 1)𝑦⃗𝑦𝑇𝑇]}[𝑊𝑊𝑖𝑖,𝑗𝑗]−1, 

where use was made of 𝑦𝑦𝑖𝑖 = �𝑊𝑊𝑖𝑖,𝛼𝛼�𝑥𝑥𝛼𝛼 to change the input 
𝑥𝑥𝑗𝑗to the synaptic gap by its weighted output 𝑦𝑦𝑖𝑖. Amari et al. 
derived a natural gradient ascend as the final BSAO 
algorithm in information geometry, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑊𝑊𝑖𝑖,𝑗𝑗

�𝑊𝑊𝑖𝑖,𝑗𝑗� = {�𝛿𝛿𝑖𝑖,𝑗𝑗� − (2𝑦⃗𝑦 − 1)𝑦⃗𝑦𝑇𝑇]}, 

which was not in the original gradient direction 𝑑𝑑𝑑𝑑/𝑑𝑑𝑊𝑊𝑖𝑖,𝑗𝑗 
and enjoyed a faster update without the inverse . 

Fast ICA: Erkki Oja began his ANN learning of nonlinear 
PCA for pattern recognition in his Ph.D. study 1982.  

< 𝑥𝑥�⃗𝑥𝑥�⃗𝑇𝑇 > 𝑒̂𝑒  = 𝜆𝜆𝑒̂𝑒; 

𝑤𝑤’ −𝑤𝑤 = 𝑥⃗𝑥𝜎𝜎(𝑥⃗𝑥𝑇𝑇𝑤𝑤��⃗ ) ≅< 𝑥⃗𝑥𝑥⃗𝑥𝑇𝑇 > 𝑤𝑤��⃗ ; 

𝑑𝑑𝑤𝑤��⃗
𝑑𝑑𝑑𝑑

=< 𝑥⃗𝑥𝑥⃗𝑥𝑇𝑇 > 𝑤𝑤��⃗ ≅ 𝜎𝜎(𝑥⃗𝑥𝑇𝑇𝑤𝑤��⃗ )𝑥⃗𝑥 ≅
𝑑𝑑𝑑𝑑(𝑢𝑢𝑖𝑖)
𝑑𝑑𝑢𝑢𝑖𝑖

d𝑢𝑢𝑖𝑖
d𝑤𝑤𝑖𝑖

≡ k(𝑥⃗𝑥𝑇𝑇𝑤𝑤��⃗ )𝑥⃗𝑥; 

where Oja changed the unary logic to bipolar hyperbolic 
tangent logic as  𝑣𝑣𝑖𝑖 = 𝜎𝜎(𝑢𝑢𝑖𝑖) ≈ 𝑢𝑢𝑖𝑖 −

2
3
𝑢𝑢𝑖𝑖3  ≅ 𝑑𝑑𝑑𝑑(𝑢𝑢𝑖𝑖)

𝑑𝑑𝑢𝑢𝑖𝑖
;  𝑢𝑢𝑖𝑖 =

𝑤𝑤𝑖𝑖,𝛼𝛼𝑥𝑥𝛼𝛼 .   
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By derivation we obtain therefore the BSAO 
unsupervised learning collectively in a termination 
condition:  It becomes similar to a Kurtosis slope, which 
suggested to Oja a new contrast function K. The following 
is the geometric basis of a stopping criterion of 
unsupervised learning. Taylor expansion of the 
normalization, and set | 𝑤𝑤��⃗ |2 = 1:  

|𝑤𝑤��⃗ ′|−1 = [(𝑤𝑤��⃗ + 𝜖𝜖𝑥⃗𝑥𝑘𝑘(𝑤𝑤��⃗ 𝑇𝑇𝑥⃗𝑥))𝑇𝑇�𝑤𝑤��⃗ + 𝜖𝜖𝑥⃗𝑥𝑘𝑘(𝑤𝑤��⃗ 𝑇𝑇𝑥⃗𝑥)�]−
1
2  

 
  

             =  1 − 𝜖𝜖
2

 𝑘𝑘(𝑤𝑤��⃗ 𝑇𝑇𝑥⃗𝑥)(𝑥⃗𝑥𝑇𝑇𝑤𝑤��⃗ + 𝑤𝑤��⃗ 𝑇𝑇𝑥⃗𝑥) + 𝑂𝑂(𝜖𝜖2).  
    

 𝑤𝑤��⃗ " ≡ 𝑤𝑤��⃗ ′|𝑤𝑤��⃗ ′|−1 
= �𝑤𝑤��⃗ + 𝜖𝜖𝑥⃗𝑥𝑘𝑘(𝑤𝑤��⃗ 𝑇𝑇𝑥⃗𝑥)� �1 −
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The ICA algorithm lets the joint probability density 
function be factorized equally according to Max Entropy 
requirement of white noise.  Unfortunately, such a filter 
approach cannot work for the remote sensing imageries, 
because the atmospheric turbulence changes spatially rather 
quickly due to a large pixel footprint which is about a tenth 
of a squared kilometers (Landsat 30 km2 per pixel).  If one 
were insisting to apply ICA to mix together all spatial (x,y) 
s-spectral vectors data 𝑋⃗𝑋𝒔𝒔(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  in parallel, the 
assumption of spatial invariant mixing matrix will produce 
inaccurate sources at the maximum entropy (Max Ent).  
Spatial invariant assumption will not work for a close-up 
dual infrared spectral band image for screening for cancer, 
because of the localization of cancer has a strongly space-
variant physiology with and without the cancer.  Solving 
the inverse of space-variant impulse response Green’s 
function or optical point spread function (psf) we need new 
MFE approach to BSS. To improve it, we have explored 
space invariant imaging (in terms of 3x3 macro-pixels) for 
macro-pixel joint density factorization ICA method; (Du, 
Kopriva, Szu, by Non-negative Matrix Factorization IEEE 
2005;& by JADE & Fast ICA Op Eng. 2006). Then, the 
comparison experience help us reformulated in 2007 a 
nonlinear LCNN, ala KKT penalty, to regularize the linear 
LCNN for assuming space-invariant result within 3x3 
nearest-neighbor macro-pixels per tumor cluster cells, but 
space-varying among macro-pixels with or without tumor 
[4]. In remote sensing, the Mexican standoff product 
challenge was overcome by the 2nd order energy expansion 
curvature known as KKT nonlinear optimization penalty.  
Typical 80 spectral band images among 158 Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) (Kopriva, 
Szu, Fast ICA, SPIE ICA etc.2002) and corresponding BSS 
out of applying LCNN to 158 channels data sources maps 
where the color blue means no class, i.e. low probability 
while red means high probability. 
 
 
 
 
 

Appendix B: BSS by Physics Source Approach: Pixel 
sequentially (Min. Free-Helmholtz Energy (MFE) 

Nonlinearlly regularized LCNN Matlab Code) 
 

Pseudo-code of LCNN for 3-source model 

Given multispectral data vector x = (𝑥𝑥1 𝑥𝑥2  𝑥𝑥3)T at a single 
pixel, 

Initialize µ0 = [0 0 0]T , C0 = 1, 𝛽𝛽𝑜𝑜 = 4, and W= 𝐴𝐴−1. 

Set iteration index k = 1, and maximum iteration number ITM 

While k ≤ ITM  
Calculate sources sk+1 subject to 0 ≤ s ≤ 1 by solving 
Eq.(20a): 

T0KB ln(sk+1) + Cksk+1 = CkWkx + µk − µk0 

If sk+1 converges, return. Otherwise continue; 
Update de-mixing matrix Eq.(15):  

Wk+1 = Wk –(1/Ck)< µkxT>/<xxT > 
Update Eq.(20c):  

µk+1 = µk + Ck (Wk+1x − sk+1) 
Update Ck+1 = 𝛽𝛽𝑜𝑜𝐶𝐶k 
k ← k + 1 

end 
 

From multiple LWIR bands images we can find EPS 
from the ground truth data generated from original human 
face radiology map in the RHS assuming 2 temperature 
sources per pixel at 29% and 70%, and the third sensor 
coolant source 1% distributed spatial randomly. Then 
compute the Planck curve RHS projected on 3 spectral 
bands in the mean value 4, 9, 11 microns.  

  

 
 
 

s1 s2 s3 

Sources 
s1 temp = 310 K 
s2 temp < 310K 
s3 temp = 77 K 

Measurements 
x1 at 4 um 
x2 at 9 um 
x3 at 11 um 

x1 x2 x3 
Recovered  

s1          s2          s3 

When the initial W is 
perfectly known 

 
When the initial W is 
completely random 
 
When the initial W is 
correlated with x1 
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Abstract 
This tutorial describes well known machine learning 

principles in a new neural network model called PALM 
(Probabilistic Adaptive Learning Mapper). PALM learns 
using a supervised algorithm inspired by the Adaptive 
Resonance Theory (ART), Restricted Coulomb Energy 
(RCE) and Learning Vector Quantization (LVQ) principles. 
During the recognition phase, PALM adapts itself to a 
«changing world», by performing an unsupervised learning. 
A supervised learning phase based on a poor data set can be 
completed during the recognition phase. The new model is 
based on twins neurons: in each couple there is one neuron, 
called "static", whose synapses are modified by supervised 
learning, and another neuron, called "dynamic", which 
inherits “knowledge” from the static one and modifies this 
knowledge in order to adapt to the evolving stimuli. In this 
tutorial, there is not a new learning theory, but just the idea 
that existing learning theories can be experimented in new 
architectural frameworks with interesting results. 
 

1. Introduction 
A new neural network model is described based on a 

Radial Basis Function architecture with adaptive and 
probabilistic behavior during the recognition phase. The 
network learns using a supervised algorithm inspired by the 
Adaptive Resonance Theory (ART), Restricted Coulomb 
Energy (RCE) and Learning Vector Quantization (LVQ) 
principles. During the recognition phase, the network, 
called PALM (Probabilistic Adaptive Learning Mapper), 
adapts itself to recognize new patterns using pattern 
probability distribution criteria. Here "mapper" should be 
intended as a general capability of mapping variables space 
in categories (mapping system). It does not have the special 
meaning of "visual map", as in "Kohonen maps".  PALM 
can adapt itself to a changing world, but can also complete 
a supervised learning phase based on a poor data set, 
performing unsupervised learning during recognition. 

During the supervised learning phase, two twin neurons 
will be created when a new prototype is required. One of 
these twin neurons is static, the other is dynamic, and both 
have the same prototype and NIF (Neuron Influence Field). 

During the recognition phase, the dynamic neurons move 
their prototypes toward the pattern that they or their relative 
static twins recognized. When the prototype of a dynamic 

 
 
 
 
 
 
 
 

 

neuron goes outside its static twin's influence field, it 
becomes static and a dynamic copy of it is created. Any 
neuron, static or dynamic, is associated with an NIC 
(Neuron Identifications Counter) that is normalized on the 
category and behaves as a parameter to evaluate the 
reliability of recognition performed on an uncertainty 
region. 

NIC works as it does in a PNN (Probabilistic Neural 
Network), but it is also incremented in the recognition 
phase. During the learning phase, NIC is incremented only 
if the recognition is correct (supervised probability update), 
while NIC is always incremented (unsupervised probability 
reinforcement) during the recognition phase.   

A recognition performed on an «uncertainty region» is 
evaluated probabilistically, using the NIR (Neuron 
Identification Reliability) of the neurons (owned by 
different categories) that identify the input pattern. In this 
case, the NIF of the not-winning neurons can be reduced to 
exclude the “incorrectly” identified pattern. 

The architecture is suitable for digital VLSI 
implementation. Due to its adaptive behavior during 
recognition, PALM can grow (dynamic neurons becomes 
twins of static-dynamic neurons), and a resource 
optimization mechanism can be investigated. The first 
investigated method is deleting the dynamic neurons with 
prototypes too close to the prototypes of their 
corresponding static copies. 

The second method investigated and used here is deleting 
the dynamic or static neuron with the lowest relative NIC in 
the same category (if NIC < k (parameter) or searching 
other categories with the same criteria). 

It is also possible to execute a learning phase after a 
recognition phase, inheriting all knowledge from the first 
learning phase and the adaptive behavior of the recognition 
phase. 

A test on the “circle in the square” problem demonstrates 
how PALM, trained with few patterns on the boundary 
regions, can build a complete knowledge base of the areas 
related to the two shapes during recognition. 

2. Architecture 
PALM contains three fully interconnected layers, as 

shown in Fig.1. 
  

Tutorial 
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Fig.1 PALM architecture 

 

 

Fig.2 L1 distance 
 

The input layer receives the input pattern and does not 
have an active function. 

The middle layer is the prototype layer: each neuron is 
associated with a prototype. The output layer is the category 
layer: each neuron is associated with a category. The 
PALM size grows during the learning and recognition 
phases, due to an adaptive behavior based on the probability 
distribution of the recognized patterns. PALM works as an 
adaptive classifier based on the patterns' L1 distance 
calculation (Fig.2). 

3. Initialization 
The PALM neural network must be initialized with the 

following parameters: 

MIF (Minimum Influence Field) 
MAF (Maximum Influence Field) 
Epsilon (prototype approaching coefficient) 
STME (Short Term Memory Edge) 
DeletionMode (flag 1/0) 

MIF is the minimum value that can assume the NIF 
(Neuron Influence Field). This parameter works when a 
new prototype is created or when a category mismatch is 
verified and the NIF of the wrong identifier neuron must be 
reduced. 

MAF is the maximum value that can assume the NIF 
(Neuron Influence Field). This parameter works only when 
a new prototype is created. The valid condition is 0 < MIF 
< MAF < 16000 in this simulation. 

Epsilon is the value that tunes the speed of a prototype to 
approach identified patterns during the learning (supervised) 
and recognition phases. Epsilon can assume a value 
between 0.1 and 1.0. 

STME is a threshold value between 0 and 100, used to 
decide whether a neuron is not useful. When a network-full 
event is verified and a new prototype must be created, a 
not-useful prototype to delete is sought with the condition 
NIC[neuron] < STME. If the DeletionMode flag value is 
1(IN_CATEGORY), the condition NIC[neuron] < STME is 
sought in the cluster of neurons matching the category of 
the neuron to be created. If the DeletionMode flag value is 
0(ALL_CATEGORY), the condition NIC[neuron] < STME 
is sought in the entire network.  

4. Learning algorithm 
Table 1 explains the supervised learning algorithm. 

When a new pattern is presented to PALM with an 
associated category, the following situations can be found: 
(1) The pattern falls in the NIF (Neuron Influence Field) of 
one or more existing neurons. If the category associated 
with the pattern is the same as the category associated with 
the winning neuron, the prototype of the winning neuron 
approaches the pattern with the rule: 

εε ×+−×=−<≤∀ kkk pPPnk )1()10(     (1) 

Or, it may be presented in meta-language as 
 
FOR k=0 TO pattern dimension – 1  
{  
 P[k] = (P[k]*(1-Epsilon) + p[k]*Epsilon) }  
 

Here, P[k] = kP = the k-th element of prototype, p[k] = kp = 
the k-th element of pattern, and Epsilon = ε  = an 
appropriate constant (0.0, 1.0). 

If the approach causes the NIF to include an existing 
prototype, the approach is aborted. 

When a pattern is recognized, the NIC (Neuron 
Identification Counter) associated with the identifier neuron 
is incremented. When the NIC reaches the maximum value 
100, it is divided by 2, along with the NICs of all neurons 
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associated with the same category (NIC normalization 
inside a category). 

If, at the same time, the pattern falls in the influence field 
of one or more neurons associated with a different category, 
the NIF of these neurons is reduced (Fig.3) to exclude the 
pattern, accordingly with MIF:  

MIFpP
n

k kjkj ∨−= ∑ −

=
))((

1

0
η           (2)                                             

Or, in meta-language as: 
New_NIF[j] = max( L1_dist(P[j],p), MIF )  

where P = prototype, p = pattern, j = the index of the 
identifier neuron, k = the index of the vector component, 
NIF = η = L1 influence field and 

).5.05.02.0:.(, =∨−=∨ eiORfuzzy  

(2) The pattern is not identified, and one new neuron must 
be created (Fig.4). 

The new neuron has the pattern as a prototype and an 
NIF equal to the L1 distance between the new prototype 
and the nearest existing prototype: 

MAFnPP
n

k kjkj ∧−= ∑ −

=
))_((

1

0
η        (3) 

Or, in meta-language as: 
NIF[new_neuron] 
=min(L1_dist(P[new_neuron],P_n), MAF )                  

where P = prototype, and P_n = nearest existing prototype, j 
= the index of the new neuron, k = the index of the vector 
component, NIF = η = L1 influence field and   

).2.05.02.0:.(, =∧−=∧ eiANDfuzzy  

 
Fig.3 NIF reduction 

 
Fig.4 New prototype creation 

Table 1. Learning Algorithm 
PROCEDURE LEARNING (VECTOR, CAT) 
 FOR N = 1 TO N = LAST_ACTIVE_NEURON            #for any committed neuron  
  L1_D = L1_DISTANCE(VECTOR, PROTOTYPE[N])      #L1 distance calculation 
  IF(L1_D < NIF[N])                              #neuron is firing 
   IF(CAT[N] = CAT)                              #category is correct 
    ID_FLAG = TRUE                               #at least one correct id   
    NIC[N] = NIC[N] + 1                          #increasing NIC  
    IF(NIC[N] = 100)                             #maximum value of NIC 
     FOR M = 1 TO M = LAST_ACTIVE_NEURON        #normalizing NIC… 
      IF (CAT[N] = CAT)                          #…on neurons with same cat 
       NIC[N] = NIC[N] / 2 
      ENDIF    
     ENDFOR  
    ENDIF 
    APPROACH(N, VECTOR)                          #approaching prototype 
   ELSEIF                                        #category is wrong… 
    NIF[N] = L1_D                                #…reducing NIF  
   ENDIF 
  ENDIF 
  IF(L1_D < MIN_L1_D)                            #searching min distance 
   MIN_L1_D = L1_D  
  ENDIF 
 ENDFOR 
 IF(ID_FLAG = FALSE)                             #no neurons fired correctly 
  IF((POS = TEST_RESOURCES()) > 0)              #test memory resources 
   CREATE_NEW_PROTOTYPE(POS, CAT, VECTOR,MAX_NIF, BOTH)    #new prototype creation 
  ENDIF                                         
 ENDIF 
END PROCEDURE 
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(3) Only neurons with different categories identify the 
pattern. The NIF of all identifying neurons must be reduced 
(Fig.3), and a new prototype must be created (Fig.4). 

5. Recognition Phase 
Table 2 explains the recognition phase behavior. Any 

pattern input into the neural network is evaluated on its L1 
distance from all existing prototypes. All neurons with an 
L1 distance from the pattern less than the relative NIF are 
identifiers. Three situations are possible: 

(1) Only neurons associated with the same category identify 
the pattern. 

In this case, the identification is performed (ID), and the 
recognition confidence is set to its maximum value. 

The prototype of the dynamic copy of the winning 
neuron (least L1 distance) also approaches the input pattern 
in the recognition phase: 

εε ×+−×=−<≤∀ kkk pDDnk )1()10(        (4)                                   

Or, in meta-language as: 

FOR k=0 TO pattern dimension – 1 
 {  
  D[k] = (D[k]*(1-Epsilon) + p[k]*Epsilon) 

}    
where D[k] = the k-th element of dynamic             
prototype, and p[k] = the k-th element of pattern (Fig.5). 

If the approach causes the NIF to include an existing 
prototype, the approach is aborted. This operation 
probabilistically adapts the dynamic prototype. This 
adaptive behavior moves the dynamic prototype's center to 
the maximum probability density region inside the NIF of 
the static twin.  

A new identification region is automatically created 
because the dynamic neuron has its own independent 
recognition capability (Fig.5). The dynamic neuron can be a 
winner when recognizing of a new input pattern and its 
prototype again moves toward the pattern. When the 
prototype center of a dynamic neuron exceeds the NIF of its 
static twin (Fig.6), two actions are possible: 

 a) Fusion: only if the condition to perform the operation 
exists, described in Fig.7. The condition is that the new NIF 
must not include an existing prototype.     

 b) Mutation: the static neuron loses the dynamic twin 
that becomes a static neuron with an associated dynamic 
twin (Fig.8). When a mutation event happens, the neural 
network grows from a single neuron. Considering a 
software or hardware PALM implementation, a mechanism 
to manage the full use resource (full network event) must be 
investigated. For PALM, I have provided for the deletion of 
a not-useful prototype. This operation follows the rule: 

∅=∴<<≠∀ jjkj nSTMENICNICNICjk ))(&))(((  (5)                             

Or, in meta-language as: 

 
Fig.5 Dynamic prototype approaching 

 
Fig.6 NIF exceed condition 

 
Fig.7 Fusion 

 
Fig.8 Mutation 

 
if(min(NIC[0],NIC[1],…,…,NIC[k-1],NIC[k])< STME)  
then DELETE neuron      
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Table 2. Recognition Algorithm 
PROCEDURE RECOGNITION (VECTOR)     
 IDENTIFIERS_NIR = 0    #initialization of variables 
 IDENTIFIERS_COUNTER = 0 
 CATEGORIES_COUNTER = 0 
 FOR N = 1 TO MAX_CAT_NUMBER 
  IDENTIFIERS_NIR_CAT[N] = 0 
 ENDFOR  
  
 FOR N = 1  TO N = LAST_ACTIVE_NEURON  #for any active neuron… 
  L1_D = L1_DISTANCE(VECTOR, PROTOTYPE[N]) #L1 distance with vector is calculated 
  IF (L1_D < NIF[N])    #if the neuron fires… 
   IDENTIFIERS_COUNTER = IDENTIFIERS_COUNTER + 1 #a counter of firing neurons is incremented 
   IF(IDENTIFIERS_NIR_CAT[CAT[N]] = 0)   #if this is the first firing neuron for category  

CAT_LIST[CATEGORIES_COUNTER] = CAT[N]  #the new category is added to the list 
    CATEGORIES_COUNTER = CATEGORIES_COUNTER + 1 #the number of categories is incremented 
   ENDIF 
   NIR[N] = NIC[N] / ((L1_D + 1) * (NIF[N] + 1))  #NIR of the firing neuron is calculated 
   IDENTIFIERS_NIR_CAT[CAT[N]] = IDENTIFIERS_NIR_CAT[CAT[N]] + NIR[N] 
      #the NIR of the neuron is added to the cumulative 
      #NIR of category 
   IDENTIFIERS_NIR = IDENTIFIERS_NIR + NIR[N] #the NIR of the neuron is added to the global 
      #cumulative NIR 
    
   IF(STATUS[N] = DYNAMIC)   #if the neuron is dynamic… 
    APPROACH(N, VECTOR)    #it's prototype is approached to vector 
    IF(L1_DISTANCE(PROTOTYPE[N], PROTOTYPE[TWIN[N]]) > NIF[TWIN[N]]) 
      #if it's prototype go outside the NIF of static  
      #twin… 
      

IF (PERFORM_FUSION(N) = FALSE)  #if the fusion doesn't include other prototypes is 
#performed and and the function return TRUE 

      IF((POS = TEST_RESOURCES()) > 0)   #fusion includes other prototypes and was aborted 
       STATUS[N] = STATIC           #N becomes static  

TWIN[TWIN[N]] = NO_TWIN      #TWIN[N] has lost the twin 
       CREATE_NEW_PROTOTYPE(POS, CAT[N], PROTOTYPE[N], NIF[N], DYNAMIC) 
      ENDIF 
     ENDIF   
    ENDIF 
  
   ELSEIF(STATUS[N] = STATIC) #the neuron is static 
     IF(N HAS A DYNAMIC TWIN) #the static neuron could have already lost it's dynamic twin… 
     APPROACH(TWIN[N], VECTOR) #the prototype of the dynamic twin is approached to vector 
 
     IF(L1_DISTANCE(PROTOTYPE[N], PROTOTYPE[TWIN[N]]) > NIF[N]) 

#if it's prototype go outside the NIF of it's static twin… 
 

IF (PERFORM_FUSION(N) = FALSE) #fusion includes other prototypes and then has been aborted 
       IF((POS = TEST_RESOURCES()) > 0)  #TWIN[N] becomes static and an identical dynamic twin is 

# created 
        STATUS[TWIN[N]] = STATIC   #TWIN[N] becomes static 
        TWIN[N] = NO_TWIN          #N has lost the twin 
        CREATE_NEW_PROTOTYPE(POS, CAT[N], PROTOTYPE[TWIN[N]], NIF[N], DYNAMIC) 
       ENDIF 
      ENDIF 
     ENDIF 
    ENDIF  
   ENDIF 
  ENDIF 
 ENDFOR      #the cycle on committed neurons is ended 
  
 FOR INDEX = 1 TO CATEGORIES_COUNTER #a cycle on categories of firing neurons starts 
  CAT = CAT_LIST[INDEX]   #get category 
CONFIDENCE[CAT] = IDENTIFIERS_NIR_CAT[CAT] * 100 / IDENTIFIERS_NIR 
     #confidence of recognition for any category is computed 

  IF (CONFIDENCE[CAT] > MAX_CONFIDENCE) 
   CONFIDENCE[CAT] = MAX_CONFIDENCE 
  ENDIF 
 ENDFOR 
END PROCEDURE 
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where NIC = Neuron Identification Counter, NIC[0] = 
Neuron Identification Counter of neurons indexed 0 in the 
cluster, STME = Short Term Memory Edge, ηj = neuron 
indexed by j, and & = logical AND. 

The cluster may contain neurons associated with the 
same category as the new prototype or all neurons in the 
network, depending on the “DeletionMode” initialization 
parameter settings. STME (Short Term Memory Edge) is a 
threshold indicating the maximum NIC acceptable to locate 
the not useful neuron in the LTM (Long Term Memory) 
context.  

All neurons identifying the pattern have their NIC 
incremented. If one reaches the maximum value 100, the 
NIC values of all neurons associated with the category are 
divided by 2 (NIC normalization inside a category).   

(2) Neurons associated with different categories are pattern 
identifiers. 

There is uncertainty in the identification (UNC), and the 
confidence values for any category present in the identifiers 
list is calculated as explained in the following steps: 

))1)(()1((
0

+−×+÷= ∑ = k
m

k jkjjj pPNIFNICNIR    (6) 

Or, in meta-language as: 
NIR[neuron]  
= NIC[neuron]/(( NIF[neuron]+1)*(L1_DISTANCE+1))    

where NIR = Neuron Identification Reliability of the 
neuron, NIC = Neuron Identification Counter of the neuron, 
NIF = Neuron influence Field of the neuron, 
L1_DISTANCE = L1 distance between input vector and 
prototype, jkP  = the k-th component of prototype indexed 

by j, kp = the k-th component of input vector, and m = 
input vector dimension. 

∑ =
=

m

k jcat NIRNIRS
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  (7)          

Or, in meta-language as: 

NIRS[cat] = NIR[A1] + NIR[A2] + … + NIR[Am]                          
NIRS = NIR[B1] + NIR[B2] + … + NIR[Bm] 

where NIRS = Neuron Identification Reliability Sum, cat = 
category of interest, A1, A2, …, Am = firing neurons 
owned by category cat, and B1, B2, …, Bm = all firing 
neurons.  

)100(max_ NIRSNIRSconfC catcat ÷×∧=      (8)                                 

Or, in meta-language as: 

C[cat]=min(MAX_CONFIDENCE,(NIRS[cat]*100/IRS))                

Where C[cat] = recognition confidence for category cat, 
MAX_CONFIDENCE = maximum value of admitted 
confidence, and ANDfuzzy _=∧ . 

(3) No neurons are pattern identifiers. No action is 
performed. 
 

6. The Circle in the Square Test 
Recognizing points inside and outside the circle is useful 

for visually understanding the behavior of a neural network 
in a pattern recognition task. The program, written in Visual 
Basic, calls the PALM functions in PALM.dll, written in C. 
The program can show the neural network prototypes with 
their NIFs or the ensemble of input points with a different 
color for any category (circle, square, not identified) during 
the recognition phase. In the grey-scale pictures, different 
colors can be distinguished by different gray levels. 

Fig.9(a) shows the neural network after 10000 learning 
points on the global surface. Fig.9(b) shows the neural 
network after 2000 learning points on the circumference 
and perimeter of the circle and square. 

The recognition phase steps verify the probabilistic 
adaptive behavior trends for building knowledge to expand 
a category region in the direction, where no other categories 
exist, that has the highest probability pattern density. 
Figs.9(c) to 10f show the growth of the neural network 
knowledge based on unsupervised learning. After 600,000 
input patterns, the neural network shows knowledge similar 
to that reached after full surface learning (Fig.9(a)) and 
seems to be more optimized (Fig.9(g) vs. Fig.9(h)). 
Considering that full surface learning has been executed 
using the setting MAF=30, the contour learning has been 
executed using the setting MAF=10 to obtain contour 
precision. 

The deceit of this test seems to be the lack of points 
outside the square, thus inhibiting the compensation for 
prototype movements around the perimeter. Pattern 
recognition problems in the real world are not so far: 
category spaces are, often, contained in larger spaces, where 
the probability of finding patterns tends toward zero. The 
clearest example is recognizing flying objects: jets and 
helicopters can never assume positions with similar shapes. 
Another common rule is that a correct feature extraction 
technique should also create a situation where category 
spaces are as distinct as possible.        

7. Network Evolution during Recognition 
It is interesting to view how the neural network evolves, 

both after learning and during the recognition phase. The 
above prototype images of the steps of the recognition 
process allow this, but other network views can better show 
the structural transformation and growth. Fig.10(a) shows 
the links between static neurons and dynamic twins at the 
end of recognition step 4. Only the links between neurons 
that are not perfectly superimposed (identical prototypes) 
are shown because this is a view in the prototypes space. 

Figs.10(b) to 10(g) show the structural evolution of the 
network (these steps do not exactly coincide with the above 
steps). In this image sequence, blue spots are neurons (static 
or dynamic) with a twin (connected with a black line), and 
red spots are neurons that have lost their twin. The sequence 
shows that any new dynamic neuron is created when a static  
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Fig.9(a) Full learning 
 
 
 
 
 
 
 
 
 
 

Fig.9(c) Recognition step 1 – prototype view 
 
 
 
 
 
 
 
 
 

 
Fig.9(e) Recognition step 3 – prototype view 

 
 
 
 
 
 
 
 
 
 

Fig.9(g) Recognition step 4 – recognition view 
 

 
 
 
 
 
 
 
 

 
Fig.9(b) Contours learning 

 
 
 
 
 
 
 
 
 
 

Fig.9(d) Recognition step 2 – prototype view 
 
 
 
 
 
 
 
 
 
 

Fig.9(f) Recognition step 4 – prototype view 
 
 
 
 
 
 
 
 
 
 

Fig.9(h) Recognition after full supervised learning – 
recognition view 
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Fig.10(a) View of the static-dynamic links in category space 
 
 
 
 
 
 
 
 
 
 

Fig.10(c) Structural view of the network after the first 
recognition step: red spots are static neurons that have lost 
their dynamic twins 
 
 
 
 
 
 
 
 
 
Fig.10(e) Structural view of the network after the third 
recognition step 
 
 
 
 
 
 
 
 
 

Fig.10(g) Structural view of the network after the fifth 
recognition step 

 
 
 
     
 
     
 
 
 

Fig.10(b) Structural view of the network after supervised 
learning: blue spots are neurons and black lines are links 
between static and dynamic neuron 
 
 

 
 
 
          
  
       
 

Fig.10(d) Structural view of the network after the second 
recognition step  
 
 
 
 
 
       
 
 
 
 
Fig.10(f) Structural view of the network after the fourth 
recognition step 
 
neuron losses its dynamic twin (i.e., a blue spot becomes 
red). It becomes static, and a black line connects it to the 
new neuron. 

8. Optimization for Implementation 
In the above test, the neural network trained on the 

unsupervised algorithm during the recognition phase seems 
to be more optimized than the neural network fully trained 
on a supervised algorithm. This was true, with the following 
considerations:  
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The number of committed neurons in full supervised 
training are thus: 

dynamic = 363, static = 363. 

The number of committed neurons in edge-supervised 
training followed by unsupervised learning in the 
recognition phase are thus: 

dynamic = 116, static = 284. 

In the first case, 363 dynamic neurons are not useful 
because their prototype is perfectly superimposed with its 
static twin. If we consider a network without a dynamic 
copy, the number of committed neurons is 363, which is 
less than 116 + 284 = 400. In the first case, the network has 
been trained with MAF = 30, which enables a large (< 30) 
NIF neuron commitment, while, in the second case, MAF = 
10 makes that committed neuron number NIF < 10. 

In the second case, the choice was needed for further 
precision in the circumference/perimeter definitions, which 
constitute the only supervised data. 

Following these considerations, we can say that 
unsupervised learning during the recognition phase grows 
with a self-optimizing mechanism (fusion when possible); 
in order to say that PALM is optimized, we must have 
resources committed only by useful neurons. Not-useful 
neurons are here the dynamic twins with exactly the same 
prototype as the static ones. The implementation must then 
consider dynamic neurons as "virtual units" that exist 
(resources commitment) only when their prototype is an 
amount "Kv" different from their static twins. The value of 
Kv is strictly related to the value of Epsilon. 

Kv should be sufficiently small to warrant network 
flexibility during the recognition phase. Kv introduces a 
region around the static prototype in which a recognized 
pattern does not introduce a movement of the dynamic twin 
prototype. This behavior reduces the number of dynamic 
neurons enabling their creation only when a recognized 
pattern is sufficiently far (but obviously inside NIF) from 
the prototype of the winning static neuron. Following this 
reasoning, the Kv could be related to NIF, i.e., a percentage 
of it. 

9. Image Sequence Test 
This test is performed to verify the network's capability 

of adapting and completing its knowledge of a pattern 
whose shape is dynamically and continuously changing. As 
I am only interested in performing a test on adaptive 
behavior, I do not consider many aspects of real pattern 
recognition or pattern tracking tasks, simplifying the 
problem and focusing on my main target. The ROS (Region 
of Scanning) and ROI (Region of Interest) sizes have been 
fixed, and the former has a position independent of the last 
recognition. Pattern scale invariance is not considered here, 
as it is outside the scope of this experiment. The feature 
extracted is simply the composite profile (after thresholding) 
of the image in the ROI (Fig.11), and scanning is performed 
using a 4 pixel step. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 Thresholding and composite profiles 
 

I have used two image sequences, showing a helicopter 
or a jet. Category 1 is associated with the helicopter, and 
category 2 is associated with the jet. The supervised 
learning uses only the first image of each sequence. After 
learning, both complete image sequences are input into the 
network in the recognition phase. 

While receiving the input image sequences, the neural 
network adapts the dynamic prototypes to follow the 
continuously changing target shape. Figs.12(a)-(c) show the 
results after 100, 500, 1000 inputs, respectively, of each 
sequence. The target identification is extended during 
recognition to the most frequent shapes assumed. I have 
changed the number of frames in any position, simulating 
an increasing frame sampling rate from the first frame to 
the last. The images shown here are steps of the complete 
frame sequences that could not be fully represented. The 
experimental hypothesis is that the frame sampling rate 
increases from the start to the end of the "movie". When 
dynamic prototypes become static, new positions are 
learned in an unsupervised manner. The rectangle around 
the shape indicates pattern identification and coincides with 
the ROI. The two patterns are identified correctly in the 
corresponding categories if the new positions have been 
learned in an unsupervised manner without associating the 
category to the pattern. The experiment aims to show a 
wider applicability of PALM’s adaptive behavior: a specific 
pattern category present in the environment in multiple 
instances may gradually change its features in a growing 
percentage of its instances. Consider a smart traffic 
monitoring camera that learns vehicle shapes that change 
gradually over time due to new styles, sizes and volumes. 
Similarly, remember the facial recognition application: 
PALM could learn the features of the face of a 10-year-old 
child and adapt the synaptic connections when he is 
recognized. A frequently performed recognition allows 
future correct recognition even after the child becomes a 
man, without requiring additional neural network training. 
If the neural network uses all memory resources available 
during this adaptation process, a "network-full" event starts  
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(a) 

 
(b) 

 
(c) 

Fig.12 Recognition after (a) 100, (b) 500, and (c) 1000 
presentations of each sequence. Red box denotes detected 
ROI, while images without red box are not recognized. 
 

a procedure of deleting not-useful neurons. In facial 
recognition, if the "network-full" event happens when the 
"child" is 18 years old, the prototypes related to age 10-15 
should have a low NIC, due to the normalization process 
performed when a prototype reaches the maximum NIC 
value.                     

 
10. Adaptive and Probabilistic Behavior Work 

Together 
The synaptic adaptive behavior and neuron probabilistic 

data seem to work with high synergy. Looking at PALM’s 
behavior, one can easily understand the contribution of 
adaptive behavior to improving the reliability and 
meaningfulness of the neuron probabilistic data. Conversely, 
neuron probabilistic data are basic instruments for 
managing network resources, supplying criteria to evaluate 
prototype usefulness.                     
 

11. Prototype Tuning using Pattern 
Probability Distribution: Adaptive Behavior 

Helps Probabilistic Behavior 
The adaptive behavior of neurons strongly influences 

using probabilistic recognition confidence. In a static 
environment, an adaptive behavior should not be required 
but the adaptation can work for tuning prototypes on the 
probability distribution of patterns falling into their 
influence fields. During the recognition phase, this 
characteristic can optimize poor data training, increasing 
the global probability of pattern identification in the field. 
Furthermore, as a secondary effect of this behavior, the 
probabilistic confidence value reliability, associated with 
any prototype, grows during the recognition task. This 
growing effect occurs not only because the number of input 
patterns grows but also because any prototype is tuned to 
optimize its position in the pattern probability distribution 
(Fig.13).  

 
12. Prototype Usefulness and Short Term 

Memory Evaluation: Probabilistic Behavior 
Helps Adaptive Behavior 

The adaptation mechanism described above implicitly 
produces a neural network growth that must be managed to 
enable real PALM implementation with limited resources 
(hardware or software). The method used here is deleting 
prototypes considered not useful or, more exactly, rarely 
used. This is a large matter where answers should be 
evaluated in any specific context. The relative number of 
patterns that a prototype identifies during its life is, in 
PALM, the value that describes the usefulness of the 
prototype itself. This value should be considered a 
probabilistic value relative to the owner's class space of the 
prototype. The normalization process performed on the NIC 
(Neuron Identification Counter) inside the class controls the 
relativity. The ensemble of NIC values inside a class  
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Fig.13 Two-dimensional view of adaptive prototype 
behavior in pattern probability distribution. The adaptive 
prototype shown can optimize itself using pattern 
probability distribution. 
 
contains all data on the pattern probability distribution 
inside the class itself. In this work, the threshold that 
enables deleting neurons is called STME (Short Term 
Memory Edge) because this concept better describes the 
role of neurons with lower NIC values inside the class. It is 
not correct to speak about the "usefulness" of neurons 
related to the probability of patterns represented by an NIC. 
It is more correct to say that a neuron with a low NIC value 
is used "rarely", and "to delete" in this context means "to 
forget". This is a restricted STM vision that should also be 
correlated with other parameters: information can be more 
or less strongly learned depending on the context in which 
it has been received. This could be a future study in PALM 
applications.                     

                                  
13. Conclusions 

This paper has presented a new neural network paradigm 
based on supervised learning and unsupervised probabilistic 
adaptive behavior during recognition. The tests performed 
have shown interesting properties. PALM shows the 
capability to interpolate the category space in an 
unsupervised manner when training data are poor and not 
uniformly distributed. During recognition, PALM can adapt 
the prototypes representing a category to be closest to the 
highest probability pattern density in that category space. 
This adaptive behavior allows PALM to adapt itself to 
gradually changing patterns. Introducing a probabilistic 
parameter inside neurons allows PALM to remove not-
useful neurons when new neurons must be created. This 
architecture is based on simple algorithms and is suitable 
for fast hardware implementation on a Field-Programmable 
Gate Array. Listings are written in a meta-language to be 
clear. Software (PALM library, “circle in the square test” 
and source code) can be requested to the author 
(luca.marchese@synaptics.org)  
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EANN 2012 
By Chrisina Jayne, ab1527@coventry.ac.uk 

The 13th EANN 2012 conference was held at the London 
Campus of Coventry University, UK during September, 
2012. The primary sponsor for the conference was the 
International Neural Network Society (INNS).  

The conference attracted delegates from twenty-four 
countries across the world: Russia, USA, South Africa, 
Germany, Italy, New Zeeland, UK, Greece, Switzerland, 
Spain, Brazil, India, Ukraine, France, Poland, Turkey, Chile, 
Israel, China, Cyprus, Taiwan, Portugal, Belgium, and 
Finland. The papers presented at the conference included 
variety of applications of neural networks and other 
computational intelligence approaches to challenging 
problems relevant to society and the economy. These 
included areas such as: intelligent transport, environmental 
engineering, computer security, civil engineering, financial 
forecasting, virtual learning environments, language 
interpretation, bioinformatics and general engineering. 

Two very lively workshops took place as part of the 
conference: Workshop on Applying Computational 
Intelligence Techniques in Financial Time Series 
Forecasting and Trading (ACIFF) and Workshop on the 
Computational Intelligence Applications in Bioinformatics 
(CIAB).  

There were amazing inspirational keynote lectures 
presented by  
• Professor Nikola Kasabov, Director and Founder, 

Knowledge Engineering and Discovery Research 
Institute (KEDRI), Chair of Knowledge Engineering, 
Auckland University of Technology, Institute for 
Neuroinformatics - ETH and University of Zurich 

• Dr. Danil Prokhorov, President-Elect of INNS, Toyota 
Research Institute NA, Ann Arbor, Michigan 

• Professor Kevin Warwick, University of Reading, 
England and Fellow of The Institution of Engineering 
and Technology 

• Professor Richard J. Duro, Grupo Integrado de Ingeniera 
Escuela Politecnica Superior, Universidade da Coruña.  

The tutorial on "Fuzzy Networks with Modular Rule 
Bases" was presented by Dr Alexander Gegov from the 
University of Portsmouth, UK. 

The International Neural network Society kindly provided 
two student awards for the EANN 2012 best student papers. 
The awards were: one for the best student paper at $250 
including two-year student INNS membership and another 
award at $150 including the same for the runner-up. 

The best student paper award was given to: Sakyasingha 
Dasgupta, PhD Student at Georg-August-Universität 
Göttingen for his paper Information Theoretic Self-
Organised Adaptation in Reservoirs for Temporal Memory 
Tasks”. 

 
 

The runner up student award went to Po-Chuan Cho, PhD 
student at National Taipei University of Technology, Taiwan 
for the paper “A Double Layer Dementia Diagnosis System 
Using Machine Learning Techniques”.  

On behalf of the Organizing Committee I would like to 
thank all that contributed to the success of the EANN 2012 
conference. 

Dr Chrisina Jayne, Chair of EANN SIG and Organizing 
Chair for EANN 2012 
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Modeling and Aiding Intuitions in 
Organizational Decision Making 
Special Issue of the 

Journal of Applied Research in Memory and 
Cognition 
Guest editors: 
Julian N. Marewski and Ulrich Hoffrage 

 The Journal of Applied Research in Memory and 
Cognition (JARMAC) will publish a special issue on 
“Modeling and Aiding Intuitions in Organizational Decision 
Making”, edited by Julian N. Marewski and Ulrich Hoffrage. 
Interested contributors are referred to a detailed outline of the 
intended contents below. 

 How do managers, civil servants, politicians, and other 
administrators make decisions? An avalanche of studies 
suggests that not only careful rational analyses, but also 
intuitions, gut feelings, and heuristics play an extremely 
important role in professional decision making—for the 
better or for the worse. 

 According to dual-process theories (e.g., Sloman, 1996), 
for instance, decision making stems from two cognitive 
systems; one which is rational, rule-based and one which is 
intuitive. Similarly, following the heuristics-and-
biases program (e.g., Kahneman, Slovic, & Tversky, 1982), 
decisions are prone to a set of biases and irrational fallacies 
that are often attributed to the intuitive system. The fast-and-
frugal heuristics framework (e.g., Gigerenzer, Todd, & the 
ABC Research Group, 1999), in contrast, stresses also what 
might be conceived of as the positive side of intuitions: 
According to this framework, successful decision makers 
smartly choose from an adaptive toolbox of efficient rules of 
thumb, labeled fast-and-frugal heuristics. Intuitions reflect 
the workings of these heuristics. 

 The different, partially segregated, theoretical approaches 
not only offer contradictory conclusions about the role of 
intuitions in organizational decision making, but also differ 
in the methodologies they rely upon. Dual-process theories 
and the heuristics-and-biases program often invoke verbal, 
informal accounts of decision making whereas the fast-and-
frugal heuristics and other frameworks strive to formulate 
computational, algorithmic models of the underlying 
cognitive processes. For example, cognitive architectures 
(e.g., Anderson, 2007) and connectionist theories (e.g., 
Rumelhart, McClelland, & the PDP Research Group, 1986), 
potentially allow understanding decision processes in terms 
of very detailed formal models. The approaches also differ 
in terms of the benchmarks they use to assess the success of 
heuristic, intuitive decision processes. The heuristics-and-
biases program, for instance, typically invokes the laws of 
logic and models that come from the subjective expected 
utility maximization tradition as normative yardsticks for 
successful decision making and human rationality. The fast-
and-frugal heuristics framework, in turn, aims at assessing  

 
 

how well decision processes are adapted to the statistical 
structure of the environment in which they operate—
an ecological view of rationality that is rooted in Herbert 
Simon’s work (e.g., 1956). Finally, the various approaches 
differ in terms of how much emphasis they place on actually 
examining professional decision making in the real-world—
as opposed to in the lab— with the naturalistic decision 
making community (e.g., Klein, 2004), making the study of 
intuitions in the wild one of its methodological priorities. 

This rich but partially segregated literature does not offer 
a consensus as to (i) how intuitive organizational decision 
making processes should be modeled and (ii) how 
organizational decision makers can be aided to make 
better decisions. Yet, especially the latter question is of 
great importance to practitioners—such as managers, 
politicians, or civil servants—who strive to improve decision 
making processes in institutions. 

This special issue intends to contribute to establishing 
such a consensus, helping practitioners and theorists alike in 
their endeavor to both understand and aid intuitive 
organizational decision making. In line with this goal, the 
special issue will not only present cutting-edge research in 
this domain, but also offer a synopsis of the various 
theoretical and methodological approaches in one volume. 
To further foster exchanges among these approaches, authors 
of accepted papers will be invited to publish a commentary 
on the contributions of the other authors (in the same volume). 

Submitted articles should make a new theoretical, 
methodological, or empirical contribution, for example, by 
presenting theoretical arguments, experimental or 
observational findings, simulation results, and mathematical 
analyses. Articles that are explicitly written for practitioners 
are also solicited. 
Specific topics of full articles include but are by no means 
limited to: 
(a)  How do intuitions guide managers, civil servants, 

politicians, and other administrators, for instance, when 
making high-stake and low-stake decisions? 

(b)  How can managers, civil servants, politicians, and other 
administrators avoid falling prey to cognitive biases by 
training their intuitions? 

(c)  How can heuristics and intuitions be systematically used 
to aid (rational) decision analysis, for instance, by 
guiding the construction of complex decision trees and 
by informing simulations of business scenarios? 

(d)  How can heuristics be implemented as decision aids in 
organizations? 

(e)  How can simple heuristic principles contribute to the 
robustness of organizations, institutions, or even society 
(cf. Taleb, 2010)? 

(f)    Why are there comparatively few detailed 
computational models of the cognitive processes 
associated with intuitive organizational decision making? 

Call for Papers 
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(g)  How can cognitive architectures, connectionist models, 
and other computational theories of cognition aid the 
study of intuitive organizational decision making? 

(h)  How can the rational analysis approach from the 
cognitive and decision sciences (e.g., Anderson, 1991; 
Oaksford & Chater, 1998) be useful for studying intuitive 
decision making in organizations? 

(i)    When should correspondence criteria and when should 
coherence criteria (e.g., Hammond, 1996) come into play 
as normative yardsticks for assessing the success of 
intuitive decisions in organizations? 

(j)    How do intuitive decision making processes differ 
depending on whether they are studied in the wild or in 
the lab? 

(k)   How can the Brunswikian methodological imperative of 
representative experimental design (e.g., Brunswik, 1955) 
be applied in the study of intuitive organizational 
decision making? 

(l)     How can the different theoretical and methodological 
approaches to intuitive organizational decision making 
be integrated into an overarching framework? 

Interested contributors are requested to contact Julian 
Marewski and Ulrich Hoffrage (by e mail: 
julian.marewski@unil.ch, ulrich.hoffrage@unil.ch; for more 
information about the guest editors, see www.modeling-
adaptive-cognition.org) and to submit, as a preliminary step, 
a summary of the intended contribution (about 200 words). 
Each summary will be evaluated by the guest editors in terms 
of the intended contribution’s scope and suitability for the 
special issue. Summaries that are submitted prior to 
December 31st will be given full consideration for the special 
issue; summaries that are submitted on a later date will also 
be considered; however, full consideration of late summaries 
will only be guaranteed as long as projected number of 
intended contributions does not exceed the available journal 
space. The deadline for submitting full papers is October 15th, 
2013. Submitted papers will be reviewed within 4 weeks 
after their reception. 

 All submissions will be subject to the journal's regular 
peer review process under the direction of the guest editors 
and Ronald Fisher, the journal's editor-in-chief. The final 
version of accepted articles must adhere to the 
journal’s author guidelines. 

One goal of the Journal of Applied Research in Memory 
and Cognition is to reach not only scientists but also 
professionals and practitioners who seek to understand, 
apply, and benefit from research on memory and cognition. 
Editorial board members are JR. Belli, R. Bjork, N. Brewer, 
S. Charman, J. Dunlosky, R. Engle, B. Fischhoff, M. Garry, 
S. Gathercole, M. Goldsmith, P.A Granhag, A. Healy, P. 
Hertel, S. Kassin, G. Keren, J. Marewski, M. McDaniel, C. 
Meissner, J. Metcalfe, K Pezdek, D. Poole, H. Roediger III, 
B. Schwartz, N. Schwarz, D. Simon, B. Spellman, A. Vrij, G. 
Wells, C. Wickens, J. Wixted, and D. Wright. The journal is 
owned by the Society for Applied Research in Memory and 
Cognition, and published by Elsevier. 
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Philosophical Approaches to Social 
Neuroscience 
Special Issue of Cognitive Systems Research 
Edited by 
Leslie Marsh (Medical School, University of British 
Columbia) and Philip Robbins (Department of Philosophy, 
University of Missouri) 

Confluence of Interest 
It’s been twenty-five years or so since Gazzaniga’s (1985) 

empirically motivated work that understood the brain as a 
kind of hermeneutic device or “interpreter” that evolved in 
response to social forces. This work could be considered a 
landmark in the nascent field of social neuroscience (SN). 
From a philosophical perspective it’s also been some twenty- 
five years since Churchland (1986) broke ranks with the a 
priorism characteristic of the prevailing philosophy of mind 
by taking heed of developments within neuroscience. 

Social neuroscience, by definition, is an acknowledgement 
that the nervous system  cannot be considered in isolation 
from the social environments in which humans have evolved. 
By the same token, the non-Cartesian wing of cognitive 
science is also a de  facto acknowledgement that ubiquitous 
sociality must be factored into philosophy of mind. This said, 
there is still a very limited literature dealing with this clear 
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confluence of interest. Of course, social neuroscience is not 
totally unknown to philosophy – possibly the most famous 
instance being the work of Gallese et al (1996), given 
philosophical currency via Gallese and Goldman (1998). But 
given the diversity of research projects that drive social 
neuroscience and “situated” philosophy of mind, the possible 
topics of philosophical investigation go well beyond mirror 
neurons. 

The motivation behind this special issue is to harvest some 
of the results from SN with a view to: 

(a) empirically enriching philosophy of mind, and 
(b) philosophically informing social neuroscience. 

To this end, we seek philosophical assessments of work 
being done in and around SN – including (but not limited to) 
work on mindreading, moral cognition, judgment and 
decision making, law and testimony, and social epistemology. 
Contributors are encouraged to scan the contents of two 
major journals that have social neuroscience as a dedicated 
interest: Neuroimaging (Elsevier) and Social Neuroscience 
(Taylor and Francis) as well as journals that have SN as a 
major interest, namely Neuropsychologica ( Elseveier), 
Journal of Cognitive Neuroscience (MIT), Journal of 
Personality and Social Psychology (APA) and Brain 
Research (Elsevier). 

The list of topics includes empathy, altruism, social pain, 
attribution, the self, stereotyping (race, gender, etc.), and 
collective intentionality. 

Some overlapping questions for consideration: 
1) Methodologically speaking, how social is (or can) 

neuroscience really be if all that is measured is brain 
activity in non-social contexts, i.e. fMRI scanners? 
(Keysers & McKay, 2011). Put another way, does social 
cognition draw upon a distinct set of processes dissociable 
from non-social processes? (Jenkins & Mitchell, 2011) 

2) What count as foundational results in SN? (Ochsner, 2004) 
3) What sort of metaphysical and epistemological 

commitments does research in SN presuppose? To what 
extent is SN opposed to reductionism in the philosophy of 
science? (Decety & Cacioppo, 2010) 

4) What drives the “techno-ebullience” surrounding 
neuroimaging in general, and neuroimaging in SN 
particular, and how might it be problematic for the field? 
(Vul et al, 2009; Decety & Cacioppo, 2010). 

Timeline 
Official start: December 1, 2012 
Final drafts due: February 1, 2014 
Refereeing: February/March 2014 
Final versions due: August 1, 2014 

In the first instance we are looking for proposals of not 
more than 500 words. The aim is to have a broad spread of 
interest comprising the issue. Final papers should be between 
7,500 and 9,000 words. Please send your proposals to both 
Philip and Leslie: 

robbinsp@missouri.edu leslie.marsh@ubc.ca 
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